blob: 9050427b34756fc0d6848df8e46b47e35b5b353d [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/NEON/kernels/NEConvertQuantizedSignednessKernel.h"
#include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
#include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
#include "support/MemorySupport.h"
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
NEGEMMLowpMatrixMultiplyCore::~NEGEMMLowpMatrixMultiplyCore() = default;
NEGEMMLowpMatrixMultiplyCore::NEGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
: _memory_group(memory_manager), _weights_manager(weights_manager), _asm_glue(memory_manager, weights_manager), _mm_kernel(), _mtx_a_reshape_kernel(), _mtx_b_reshape_kernel(),
_mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(), _offset_contribution_output_stage_kernel(), _activation_func(), _convert_to_signed_asymm(),
_convert_from_signed_asymm(), _vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _mm_result_s32(), _signed_a(), _signed_output(), _original_b(nullptr), _a_offset(0), _b_offset(0),
_run_vector_matrix_multiplication(false), _assembly_path(false), _fused_assembly_path(false), _reshape_b_only_on_first_run(false), _is_prepared(false), _fuse_output_stage(false),
_run_activation(false), _flip_signedness(false)
{
}
void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_UNUSED(c);
ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
const ITensor *matrix_a = a;
const ITensor *matrix_b = b;
GEMMInfo info = gemm_info;
// Set internal variables
_a_offset = a->info()->quantization_info().uniform().offset;
_b_offset = b->info()->quantization_info().uniform().offset;
_run_vector_matrix_multiplication = a->info()->dimension(1) < 2;
_reshape_b_only_on_first_run = info.reshape_b_only_on_first_run();
_is_prepared = false;
_fused_assembly_path = false;
_flip_signedness = is_data_type_quantized_per_channel(b->info()->data_type()) && (a->info()->data_type() == DataType::QASYMM8) && _reshape_b_only_on_first_run;
_original_b = b;
const ITensor *a_to_use = a;
// Convert to QASYMM8 -> QASYMM8_SIGNED and back
if(_flip_signedness)
{
const int32_t offset_correction = 128;
const DataType dt = DataType::QASYMM8_SIGNED;
const UniformQuantizationInfo iqinfo = a_to_use->info()->quantization_info().uniform();
_signed_a.allocator()->init(a_to_use->info()->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction)));
_memory_group.manage(&_signed_a);
_convert_to_signed_asymm = arm_compute::support::cpp14::make_unique<NEConvertQuantizedSignednessKernel>();
_convert_to_signed_asymm->configure(a_to_use, &_signed_a);
a_to_use = &_signed_a;
_a_offset = _signed_a.info()->quantization_info().uniform().offset;
const UniformQuantizationInfo oqinfo = output->info()->quantization_info().uniform();
_memory_group.manage(&_signed_output);
_signed_output.allocator()->init(output->info()->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction)));
// Output stage correction
GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
output_stage_corr.gemmlowp_offset = _signed_output.info()->quantization_info().uniform().offset;
output_stage_corr.gemmlowp_min_bound -= offset_correction;
output_stage_corr.gemmlowp_max_bound -= offset_correction;
info.set_gemmlowp_output_stage(output_stage_corr);
// Update matrix a
matrix_a = &_signed_a;
}
// If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
if(info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
_fuse_output_stage = true;
_memory_group.manage(&_mm_result_s32);
TensorInfo info_mm_result_s32(output->info()->tensor_shape(), 1, DataType::S32);
_mm_result_s32.allocator()->init(info_mm_result_s32);
}
#ifdef __aarch64__
switch(a->info()->data_type())
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::U8:
case DataType::S8:
{
if(is_data_type_quantized_asymmetric(a_to_use->info()->data_type()) && info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
_asm_glue.configure(a_to_use, b, c, output, gemm_info);
_fused_assembly_path = _asm_glue.is_configured();
}
else
{
_asm_glue.configure(a_to_use, b, nullptr, _fuse_output_stage ? &_mm_result_s32 : output, gemm_info);
}
_assembly_path = _asm_glue.is_configured();
break;
}
default:
{
ARM_COMPUTE_ERROR("Datatype not supported");
break;
}
}
#endif /* __aarch64__ */
if(!(_assembly_path || _run_vector_matrix_multiplication))
{
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
// The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
TensorInfo a_info(compute_interleaved_shape(*a_to_use->info()), 1, a_to_use->info()->data_type(), a_to_use->info()->quantization_info());
// The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
TensorInfo b_info(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type(), b->info()->quantization_info());
_tmp_a.allocator()->init(a_info);
_tmp_b.allocator()->init(b_info);
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
// Configure interleave kernel
_mtx_a_reshape_kernel = arm_compute::support::cpp14::make_unique<NEGEMMInterleave4x4Kernel>();
_mtx_a_reshape_kernel->configure(a_to_use, &_tmp_a);
// Configure transpose kernel
_mtx_b_reshape_kernel = arm_compute::support::cpp14::make_unique<NEGEMMTranspose1xWKernel>();
_mtx_b_reshape_kernel->configure(b, &_tmp_b);
}
if(!_fused_assembly_path)
{
// Build reduction info
const GEMMLowpReductionKernelInfo reduction_info(a_to_use->info()->dimension(0), false, 0, false);
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
{
TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
_vector_sum_col.allocator()->init(info_vector_sum_col);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_vector_sum_col);
}
// Configure Matrix B reduction kernel
_mtx_b_reduction_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixBReductionKernel>();
_mtx_b_reduction_kernel->configure(b, &_vector_sum_col, reduction_info);
}
// Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
TensorInfo info_vector_sum_row(compute_reductionB_shape(*a_to_use->info()), 1, DataType::S32);
_vector_sum_row.allocator()->init(info_vector_sum_row);
_memory_group.manage(&_vector_sum_row);
// Configure matrix A reduction kernel
_mtx_a_reduction_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixAReductionKernel>();
_mtx_a_reduction_kernel->configure(a_to_use, &_vector_sum_row, reduction_info);
}
if(_fuse_output_stage)
{
// Configure matrix multiply kernel
if(!_assembly_path)
{
_mm_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
_mm_kernel->configure(matrix_a, matrix_b, &_mm_result_s32);
}
_offset_contribution_output_stage_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpOffsetContributionOutputStageKernel>();
_offset_contribution_output_stage_kernel->configure(&_mm_result_s32,
_a_offset == 0 ? nullptr : &_vector_sum_col,
_b_offset == 0 ? nullptr : &_vector_sum_row, c,
_flip_signedness ? &_signed_output : output,
a->info()->dimension(0),
_a_offset, _b_offset, info.gemmlowp_output_stage());
if(_flip_signedness)
{
_convert_from_signed_asymm = arm_compute::support::cpp14::make_unique<NEConvertQuantizedSignednessKernel>();
_convert_from_signed_asymm->configure(&_signed_output, output);
}
}
else
{
// Configure matrix multiply kernel
if(!_assembly_path)
{
_mm_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
_mm_kernel->configure(matrix_a, matrix_b, output);
}
// Configure offset contribution kernel
_offset_contribution_kernel = arm_compute::support::cpp14::make_unique<NEGEMMLowpOffsetContributionKernel>();
_offset_contribution_kernel->configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a_to_use->info()->dimension(0), _a_offset, _b_offset);
}
// Configure activation
const ActivationLayerInfo &activation = gemm_info.activation_info();
_run_activation = activation.enabled() && (!_assembly_path || (_assembly_path && !NEGEMMAssemblyDispatch::is_activation_supported(activation)));
if(_run_activation)
{
_activation_func.configure(output, nullptr, activation);
}
}
// Allocate tensors
if(!_assembly_path && !_run_vector_matrix_multiplication)
{
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
if(!_fused_assembly_path)
{
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
}
if(_b_offset != 0)
{
_vector_sum_row.allocator()->allocate();
}
}
if(_fuse_output_stage)
{
_mm_result_s32.allocator()->allocate();
}
if(_flip_signedness)
{
_signed_a.allocator()->allocate();
_signed_output.allocator()->allocate();
}
}
Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE, "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore for output S32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
"The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
GEMMInfo info = gemm_info;
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
const ITensorInfo *a_to_use = a;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
TensorInfo mm_result_s32_info{};
int32_t a_offset = a->quantization_info().uniform().offset;
int32_t b_offset = b->quantization_info().uniform().offset;
bool fuse_output_stage = info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE;
if(fuse_output_stage)
{
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(output->tensor_shape()).set_data_type(DataType::S32));
}
// Convert QASYMM8->QASYMM8_SIGNED
TensorInfo signed_a{};
TensorInfo signed_output{};
bool flip_signedness = is_data_type_quantized_per_channel(b->data_type()) && (a->data_type() == DataType::QASYMM8) && info.reshape_b_only_on_first_run();
if(flip_signedness)
{
const int32_t offset_correction = 128;
const DataType dt = DataType::QASYMM8_SIGNED;
const UniformQuantizationInfo iqinfo = a_to_use->quantization_info().uniform();
signed_a = a_to_use->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction));
ARM_COMPUTE_RETURN_ON_ERROR(NEConvertQuantizedSignednessKernel::validate(a_to_use, &signed_a));
a_to_use = &signed_a;
a_offset = signed_a.quantization_info().uniform().offset;
const UniformQuantizationInfo oqinfo = output->quantization_info().uniform();
signed_output = output->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction));
// Output stage correction
GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
output_stage_corr.gemmlowp_offset = signed_output.quantization_info().uniform().offset;
output_stage_corr.gemmlowp_min_bound -= offset_correction;
output_stage_corr.gemmlowp_max_bound -= offset_correction;
info.set_gemmlowp_output_stage(output_stage_corr);
// Update matrix a
matrix_a_info = &signed_a;
}
// Check if we need to run the optimized assembly kernel
bool run_optimised = false;
bool run_optimised_requantized = false;
if(is_data_type_quantized_asymmetric(a_to_use->data_type()) && info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
run_optimised = bool(NEGEMMAssemblyDispatch::validate(a_to_use, b, c, output, gemm_info));
run_optimised_requantized = run_optimised;
}
else
{
run_optimised = bool(NEGEMMAssemblyDispatch::validate(a_to_use, b, nullptr, fuse_output_stage ? &mm_result_s32_info : output, gemm_info));
}
if(run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
if(info.depth_output_gemm3d() != 0)
{
if(info.reinterpret_input_as_3d())
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "NEGEMM cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "NEGEMM cannot reinterpret the output tensor as 3D");
const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
if(!run_vector_matrix_multiplication)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
// The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
TensorShape shape_tmp_a = a->tensor_shape();
shape_tmp_a.set(0, a->dimension(0) * 4);
shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f));
// The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
TensorShape shape_tmp_b = b->tensor_shape();
shape_tmp_b.set(0, b->dimension(1) * 16);
shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f));
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a_to_use->clone()->set_tensor_shape(shape_tmp_a));
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(shape_tmp_b));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a_to_use, &tmp_a_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &tmp_b_info));
}
}
if(!run_optimised_requantized)
{
TensorInfo info_vector_sum_col{};
TensorInfo info_vector_sum_row{};
const GEMMLowpReductionKernelInfo reduction_info(a_to_use->dimension(0), false, 0, false);
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
if(a_offset != 0)
{
info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
// Configure Matrix B reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col, reduction_info));
}
// Validate Matrix A reduction kernel only if _b_offset is not equal to 0
if(b_offset != 0)
{
info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(a_to_use, &info_vector_sum_row, reduction_info));
}
if(fuse_output_stage)
{
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "NEGEMMLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "NEGEMMLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
flip_signedness ? &signed_output : output,
a_offset, b_offset,
info.gemmlowp_output_stage()));
}
else
{
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "NEGEMMLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "NEGEMMLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionKernel::validate(output,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
a_offset, b_offset));
}
}
// Validate activation
const ActivationLayerInfo &activation = gemm_info.activation_info();
if(activation.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, activation));
}
return Status{};
}
void NEGEMMLowpMatrixMultiplyCore::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Convert QASYMM8->QASYMM8_SIGNED
if(_flip_signedness)
{
NEScheduler::get().schedule(_convert_to_signed_asymm.get(), Window::DimY);
}
// Run GEMM
if(_asm_glue.is_configured())
{
_asm_glue.run();
}
else
{
if(!_run_vector_matrix_multiplication)
{
// Run interleave kernel
NEScheduler::get().schedule(_mtx_a_reshape_kernel.get(), Window::DimY);
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
}
}
NEScheduler::get().schedule(_mm_kernel.get(), Window::DimY);
}
if(!_fused_assembly_path)
{
// Run matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
NEScheduler::get().schedule(_mtx_a_reduction_kernel.get(), Window::DimX);
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
NEScheduler::get().schedule(_mtx_b_reduction_kernel.get(), Window::DimX);
}
if(_fuse_output_stage)
{
// Run offset contribution kernel
NEScheduler::get().schedule(_offset_contribution_output_stage_kernel.get(), Window::DimY);
}
else
{
// Run offset contribution kernel
NEScheduler::get().schedule(_offset_contribution_kernel.get(), Window::DimY);
}
}
// Convert QASYMM8_SIGNED->QASYMM8
if(!_fused_assembly_path && _fuse_output_stage && _flip_signedness)
{
NEScheduler::get().schedule(_convert_from_signed_asymm.get(), Window::DimY);
}
// Run fused activation unless already run in the fused assembly
if(_run_activation && !_fused_assembly_path)
{
_activation_func.run();
}
}
void NEGEMMLowpMatrixMultiplyCore::prepare()
{
if(!_is_prepared)
{
const bool original_b_managed_by_weights_manager = _weights_manager && _weights_manager->are_weights_managed(_original_b);
// Run assembly reshape
if(_asm_glue.is_configured())
{
if(!original_b_managed_by_weights_manager)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
}
_asm_glue.prepare();
if(!original_b_managed_by_weights_manager)
{
_original_b->mark_as_unused();
}
}
// Run non-assembly reshape
else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue.is_configured())
{
if(!original_b_managed_by_weights_manager)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
}
// Run reshape kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
if(!original_b_managed_by_weights_manager)
{
_original_b->mark_as_unused();
}
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(!_fused_assembly_path && _a_offset != 0 && _reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
NEScheduler::get().schedule(_mtx_b_reduction_kernel.get(), Window::DimX);
}
_is_prepared = true;
}
}
} // namespace arm_compute