blob: 92659f39a2bb2dd322f0f9562c224e0695143fbb [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEPadLayer.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/NEON/kernels/NECopyKernel.h"
#include "src/core/NEON/kernels/NEPadLayerKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "support/MemorySupport.h"
namespace arm_compute
{
namespace
{
uint32_t last_padding_dimension(const PaddingList &padding)
{
int last_padding_dim = padding.size() - 1;
for(; last_padding_dim >= 0; --last_padding_dim)
{
if(padding[last_padding_dim].first > 0 || padding[last_padding_dim].second > 0)
{
break;
}
}
return static_cast<uint32_t>(last_padding_dim);
}
} // namespace
NEPadLayer::~NEPadLayer() = default;
NEPadLayer::NEPadLayer()
: _copy_kernel(), _pad_kernel(), _mode(), _padding(), _num_dimensions(0), _slice_functions(), _concat_functions(), _slice_results(), _concat_results()
{
}
void NEPadLayer::configure_constant_mode(ITensor *input, ITensor *output, const PaddingList &padding, const PixelValue constant_value)
{
_pad_kernel = arm_compute::support::cpp14::make_unique<NEPadLayerKernel>();
_pad_kernel->configure(input, output, padding, constant_value, PaddingMode::CONSTANT);
}
void NEPadLayer::configure_reflect_symmetric_mode(ITensor *input, ITensor *output)
{
// Reflecting can be performed by effectively unfolding the input as follows:
// For each dimension starting at DimX:
// For before and after:
// Use strided slice to extract and reverse the part of the
// input / previously produced tensor required for the padding.
// Concatenate the before and after padding with the input / previously
// produced tensor along the current dimension.
// Two strided slice functions will be required for each dimension padded as well as a
// concatenate function and the tensors to hold the temporary results.
_slice_functions.resize(2 * _num_dimensions);
_slice_results.resize(2 * _num_dimensions);
_concat_functions.resize(_num_dimensions);
_concat_results.resize(_num_dimensions - 1);
Coordinates starts_before{};
Coordinates ends_before{};
Coordinates starts_after{};
Coordinates ends_after{};
Coordinates strides{};
ITensor *prev = input;
for(uint32_t i = 0; i < _num_dimensions; ++i)
{
// Values in strides from the previous dimensions need to be set to 1 to avoid reversing again.
if(i > 0)
{
strides.set(i - 1, 1);
}
if(_padding[i].first > 0 || _padding[i].second > 0)
{
// Set the starts, ends, and strides values for the current dimension.
// Due to the bit masks passed to strided slice, the values below the current dimension in
// starts and ends will be ignored so do not need to be modified.
if(_mode == PaddingMode::REFLECT)
{
starts_before.set(i, _padding[i].first);
ends_before.set(i, 0);
starts_after.set(i, input->info()->dimension(i) - 2);
ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 2);
strides.set(i, -1);
}
else
{
starts_before.set(i, _padding[i].first - 1);
ends_before.set(i, -1);
starts_after.set(i, input->info()->dimension(i) - 1);
ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 1);
strides.set(i, -1);
}
// Strided slice wraps negative indexes around to the end of the range,
// instead this should indicate use of the full range and so the bit mask will be modified.
const int32_t begin_mask_before = starts_before[i] < 0 ? ~0 : ~(1u << i);
const int32_t end_mask_before = ends_before[i] < 0 ? ~0 : ~(1u << i);
const int32_t begin_mask_after = starts_after[i] < 0 ? ~0 : ~(1u << i);
const int32_t end_mask_after = ends_after[i] < 0 ? ~0 : ~(1u << i);
// Reflect the input values for the padding before and after the input.
std::vector<const ITensor *> concat_vector;
if(_padding[i].first > 0)
{
if(i < prev->info()->num_dimensions())
{
_slice_functions[2 * i].configure(prev, &_slice_results[2 * i], starts_before, ends_before, strides, begin_mask_before, end_mask_before);
concat_vector.emplace_back(&_slice_results[2 * i]);
}
else
{
// Performing the slice is unnecessary if the result would simply be a copy of the tensor.
concat_vector.push_back(prev);
}
}
concat_vector.push_back(prev);
if(_padding[i].second > 0)
{
if(i < prev->info()->num_dimensions())
{
_slice_functions[2 * i + 1].configure(prev, &_slice_results[2 * i + 1], starts_after, ends_after, strides, begin_mask_after, end_mask_after);
concat_vector.emplace_back(&_slice_results[2 * i + 1]);
}
else
{
// Performing the slice is unnecessary if the result would simply be a copy of the tensor.
concat_vector.push_back(prev);
}
}
// Concatenate the padding before and after with the input.
ITensor *out = (i == _num_dimensions - 1) ? output : &_concat_results[i];
_concat_functions[i].configure(concat_vector, out, i);
if(i != _num_dimensions - 1)
{
_concat_results[i].allocator()->allocate();
}
prev = out;
}
_slice_results[2 * i].allocator()->allocate();
_slice_results[2 * i + 1].allocator()->allocate();
}
}
void NEPadLayer::configure(ITensor *input, ITensor *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
{
ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), padding, constant_value, mode));
_padding = padding;
_mode = mode;
const TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->info()->tensor_shape(), _padding);
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(padded_shape));
// Find the last dimension requiring padding so that it is known when to write to output and whether any padding is applied.
_num_dimensions = last_padding_dimension(padding) + 1;
if(_num_dimensions > 0)
{
switch(_mode)
{
case PaddingMode::CONSTANT:
{
configure_constant_mode(input, output, padding, constant_value);
break;
}
case PaddingMode::REFLECT:
case PaddingMode::SYMMETRIC:
{
configure_reflect_symmetric_mode(input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Padding mode not supported.");
}
}
else
{
// Copy the input to the whole output if no padding is applied
_copy_kernel = arm_compute::support::cpp14::make_unique<NECopyKernel>();
_copy_kernel->configure(input, output);
}
}
Status NEPadLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
{
ARM_COMPUTE_UNUSED(constant_value);
const TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding);
if(output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), padded_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
switch(mode)
{
case PaddingMode::CONSTANT:
{
return NEPadLayerKernel::validate(input, output, padding, constant_value, mode);
}
case PaddingMode::REFLECT:
case PaddingMode::SYMMETRIC:
{
for(uint32_t i = 0; i < padding.size(); ++i)
{
if(mode == PaddingMode::REFLECT)
{
ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first >= input->dimension(i));
ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second >= input->dimension(i));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first > input->dimension(i));
ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second > input->dimension(i));
}
}
break;
}
default:
{
ARM_COMPUTE_ERROR("Invalid mode");
}
}
return Status{};
}
void NEPadLayer::run()
{
if(_num_dimensions > 0)
{
switch(_mode)
{
case PaddingMode::CONSTANT:
{
NEScheduler::get().schedule(_pad_kernel.get(), Window::DimZ);
break;
}
case PaddingMode::REFLECT:
case PaddingMode::SYMMETRIC:
{
for(uint32_t i = 0; i < _num_dimensions; ++i)
{
if(_padding[i].first > 0 || _padding[i].second > 0)
{
if(_padding[i].first > 0 && _slice_results[2 * i].info()->total_size() > 0)
{
_slice_functions[2 * i].run();
}
if(_padding[i].second > 0 && _slice_results[2 * i + 1].info()->total_size() > 0)
{
_slice_functions[2 * i + 1].run();
}
_concat_functions[i].run();
}
}
break;
}
default:
ARM_COMPUTE_ERROR("Padding mode not supported.");
}
}
else
{
NEScheduler::get().schedule(_copy_kernel.get(), Window::DimY);
}
}
} // namespace arm_compute