blob: 0290fe5a0158b47c2b38522a8af1f72d9d8c395d [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEScale.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "src/core/NEON/kernels/NEScaleKernel.h"
#include "src/core/utils/ScaleUtils.h"
#include "support/MemorySupport.h"
#include "support/Rounding.h"
#include <cmath>
#include <cstddef>
#include <utility>
namespace arm_compute
{
namespace
{
void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, SamplingPolicy sampling_policy, bool align_corners)
{
ARM_COMPUTE_ERROR_ON(nullptr == offsets);
ARM_COMPUTE_UNUSED(sampling_policy);
float sampling_offset = 0.0f;
if(sampling_policy == SamplingPolicy::CENTER)
{
sampling_offset = 0.5f;
}
Window win;
win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1));
win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1));
if(dx != nullptr && dy != nullptr)
{
// Pre-compute the offset and pixel's distance for BILINEAR interpolation
Iterator offsets_it(offsets, win);
Iterator dx_it(dx, win);
Iterator dy_it(dy, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const float in_x = (id.x() + sampling_offset) * wr - sampling_offset;
const float in_y = (id.y() + sampling_offset) * hr - sampling_offset;
const int in_xi = std::floor(in_x);
const int in_yi = std::floor(in_y);
*reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
*reinterpret_cast<float *>(dx_it.ptr()) = in_x - in_xi;
*reinterpret_cast<float *>(dy_it.ptr()) = in_y - in_yi;
},
offsets_it, dx_it, dy_it);
}
else
{
// Pre-compute the offset for NEAREST interpolation
Iterator offsets_it(offsets, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const float float_in_xi = (id.x() + sampling_offset) * wr;
const auto in_xi = static_cast<size_t>(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi));
*reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
},
offsets_it);
}
}
} // namespace
NEScale::NEScale()
: _offsets(), _dx(), _dy()
{
}
void NEScale::configure(ITensor *input, ITensor *output, const ScaleKernelInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(NEScale::validate(input->info(), output->info(), info));
const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);
// Get data layout and width/height indices
const DataLayout data_layout = input->info()->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Get the tensor shape
TensorShape shape(output->info()->dimension(idx_width));
shape.set(1, output->info()->dimension(idx_height), false);
// Compute the ratio between source width/height and destination width/height
const auto wr = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_width), output->info()->dimension(idx_width), is_align_corners_used);
const auto hr = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_height), output->info()->dimension(idx_height), is_align_corners_used);
// Area interpolation behaves as Nearest Neighbour in case of up-sampling
const auto policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;
auto scale_kernel = arm_compute::support::cpp14::make_unique<NEScaleKernel>();
switch(policy_to_use)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
{
TensorInfo tensor_info_offsets(shape, Format::S32);
_offsets.allocator()->init(tensor_info_offsets);
scale_kernel->configure(input, nullptr, nullptr, &_offsets, output, info);
// Allocate once the configure methods have been called
_offsets.allocator()->allocate();
// Pre-compute offsets for nearest interpolation
precompute_dx_dy_offsets(nullptr, nullptr, &_offsets, wr, hr, info.sampling_policy, is_align_corners_used);
break;
}
case InterpolationPolicy::BILINEAR:
{
TensorInfo tensor_info_offsets(shape, Format::S32);
TensorInfo tensor_info_dxdy(shape, Format::F32);
_offsets.allocator()->init(tensor_info_offsets);
_dx.allocator()->init(tensor_info_dxdy);
_dy.allocator()->init(tensor_info_dxdy);
scale_kernel->configure(input, &_dx, &_dy, &_offsets, output, info);
// Allocate once the configure methods have been called
_offsets.allocator()->allocate();
_dx.allocator()->allocate();
_dy.allocator()->allocate();
// Pre-compute dx, dy and offsets for bilinear interpolation
precompute_dx_dy_offsets(&_dx, &_dy, &_offsets, wr, hr, info.sampling_policy, is_align_corners_used);
break;
}
case InterpolationPolicy::AREA:
{
scale_kernel->configure(input, nullptr, nullptr, nullptr, output, info);
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported interpolation mode");
}
_kernel = std::move(scale_kernel);
}
Status NEScale::validate(const ITensorInfo *input, const ITensorInfo *output, const ScaleKernelInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);
ITensorInfo *offsets = nullptr;
ITensorInfo *dx = nullptr;
ITensorInfo *dy = nullptr;
// Get data layout and width/height indices
const DataLayout data_layout = input->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Get the tensor shape of auxilary buffers
const TensorShape shape(output->dimension(idx_width), output->dimension(idx_height));
TensorInfo tensor_info_offsets(shape, Format::S32);
TensorInfo tensor_info_dx(shape, Format::F32);
TensorInfo tensor_info_dy(shape, Format::F32);
switch(info.interpolation_policy)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
offsets = &tensor_info_offsets;
break;
case InterpolationPolicy::BILINEAR:
offsets = &tensor_info_offsets;
dx = &tensor_info_dx;
dy = &tensor_info_dy;
break;
default:
break;
}
ARM_COMPUTE_RETURN_ON_ERROR(NEScaleKernel::validate(input->clone().get(), dx, dy, offsets, output->clone().get(), info));
return Status{};
}
} // namespace arm_compute