blob: e52f1ea4869af11118a0b9df652a5a8237c8f576 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "helpers_asymm.h"
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val = arm_dot_acc((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3), val);
#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val += arm_dot((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3));
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(COLS_B) && defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(TRANSPOSE1XW_WIDTH_STEP)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel before running the matrix multiplication
*
* @note The number of matrix B columns needs to be passed at compile time using -DCOLS_B: e.g. -DCOLS_B=1024
* @note The transposition width step (mult_transpose1xW_width * 4) must be passed at compile time using -DTRANSPOSE1XW_WIDTH_STEP (i.e. -DTRANSPOSE1XW_WIDTH_STEP=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_interleaved_transposed_midgard(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
const int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
const int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
const int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global uchar *src_addr_a = (__global uchar *)(src0_ptr + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr_b += (z % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr_b += z * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
// Compute end row address for matrix B
__global uchar *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
int4 c00 = 0;
int4 c10 = 0;
int4 c20 = 0;
int4 c30 = 0;
for(; src_addr_b <= (src_end_addr_b - (int)(8 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * TRANSPOSE1XW_WIDTH_STEP)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
int4 a0 = convert_int4(vload4(0, src_addr_a));
int4 b0 = convert_int4(vload4(0, src_addr_b));
c00 += (int4)a0.s0 * b0;
c10 += (int4)a0.s1 * b0;
c20 += (int4)a0.s2 * b0;
c30 += (int4)a0.s3 * b0;
a0 = convert_int4(vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT));
b0 = convert_int4(vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP));
c00 += (int4)a0.s0 * b0;
c10 += (int4)a0.s1 * b0;
c20 += (int4)a0.s2 * b0;
c30 += (int4)a0.s3 * b0;
}
for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
int4 a0 = convert_int4(vload4(0, src_addr_a));
int4 b0 = convert_int4(vload4(0, src_addr_b));
c00 += (int4)a0.s0 * b0;
c10 += (int4)a0.s1 * b0;
c20 += (int4)a0.s2 * b0;
c30 += (int4)a0.s3 * b0;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store 4x4 block
vstore4(c00, 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
vstore4(c10, 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
vstore4(c20, 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
vstore4(c30, 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store 4x4 block
vstore4(c00, 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
vstore4(c10, 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
vstore4(c20, 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
vstore4(c30, 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
/** This OpenCL kernel is optimized for Bifrost and computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel before running the matrix multiplication
*
* @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
* @note The transposition width step (mult_transpose1xW_width * 4) must be passed at compile time using -DTRANSPOSE1XW_WIDTH_STEP (i.e. -DTRANSPOSE1XW_WIDTH_STEP=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_interleaved_transposed_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
const int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
const int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
const int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global uchar *src_addr_a = (__global uchar *)(src0_ptr + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr_b += (z % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr_b += z * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
// Compute end row address for matrix B
__global uchar *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
uint c00 = 0;
uint c01 = 0;
uint c02 = 0;
uint c03 = 0;
uint c10 = 0;
uint c11 = 0;
uint c12 = 0;
uint c13 = 0;
uint c20 = 0;
uint c21 = 0;
uint c22 = 0;
uint c23 = 0;
uint c30 = 0;
uint c31 = 0;
uint c32 = 0;
uint c33 = 0;
#if MULT_INTERLEAVE4X4_HEIGHT == 1
for(; src_addr_b <= (src_end_addr_b - (int)(32 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += (32 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (32 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar16 a0 = vload16(0, src_addr_a);
uchar4 b0 = vload4(0, src_addr_b);
c00 += (ushort)a0.s0 * b0.s0;
c01 += (ushort)a0.s0 * b0.s1;
c02 += (ushort)a0.s0 * b0.s2;
c03 += (ushort)a0.s0 * b0.s3;
c10 += (ushort)a0.s1 * b0.s0;
c11 += (ushort)a0.s1 * b0.s1;
c12 += (ushort)a0.s1 * b0.s2;
c13 += (ushort)a0.s1 * b0.s3;
c20 += (ushort)a0.s2 * b0.s0;
c21 += (ushort)a0.s2 * b0.s1;
c22 += (ushort)a0.s2 * b0.s2;
c23 += (ushort)a0.s2 * b0.s3;
c30 += (ushort)a0.s3 * b0.s0;
c31 += (ushort)a0.s3 * b0.s1;
c32 += (ushort)a0.s3 * b0.s2;
c33 += (ushort)a0.s3 * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.s4 * b0.s0;
c01 += (ushort)a0.s4 * b0.s1;
c02 += (ushort)a0.s4 * b0.s2;
c03 += (ushort)a0.s4 * b0.s3;
c10 += (ushort)a0.s5 * b0.s0;
c11 += (ushort)a0.s5 * b0.s1;
c12 += (ushort)a0.s5 * b0.s2;
c13 += (ushort)a0.s5 * b0.s3;
c20 += (ushort)a0.s6 * b0.s0;
c21 += (ushort)a0.s6 * b0.s1;
c22 += (ushort)a0.s6 * b0.s2;
c23 += (ushort)a0.s6 * b0.s3;
c30 += (ushort)a0.s7 * b0.s0;
c31 += (ushort)a0.s7 * b0.s1;
c32 += (ushort)a0.s7 * b0.s2;
c33 += (ushort)a0.s7 * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 8 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.s8 * b0.s0;
c01 += (ushort)a0.s8 * b0.s1;
c02 += (ushort)a0.s8 * b0.s2;
c03 += (ushort)a0.s8 * b0.s3;
c10 += (ushort)a0.s9 * b0.s0;
c11 += (ushort)a0.s9 * b0.s1;
c12 += (ushort)a0.s9 * b0.s2;
c13 += (ushort)a0.s9 * b0.s3;
c20 += (ushort)a0.sA * b0.s0;
c21 += (ushort)a0.sA * b0.s1;
c22 += (ushort)a0.sA * b0.s2;
c23 += (ushort)a0.sA * b0.s3;
c30 += (ushort)a0.sB * b0.s0;
c31 += (ushort)a0.sB * b0.s1;
c32 += (ushort)a0.sB * b0.s2;
c33 += (ushort)a0.sB * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 12 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.sC * b0.s0;
c01 += (ushort)a0.sC * b0.s1;
c02 += (ushort)a0.sC * b0.s2;
c03 += (ushort)a0.sC * b0.s3;
c10 += (ushort)a0.sD * b0.s0;
c11 += (ushort)a0.sD * b0.s1;
c12 += (ushort)a0.sD * b0.s2;
c13 += (ushort)a0.sD * b0.s3;
c20 += (ushort)a0.sE * b0.s0;
c21 += (ushort)a0.sE * b0.s1;
c22 += (ushort)a0.sE * b0.s2;
c23 += (ushort)a0.sE * b0.s3;
c30 += (ushort)a0.sF * b0.s0;
c31 += (ushort)a0.sF * b0.s1;
c32 += (ushort)a0.sF * b0.s2;
c33 += (ushort)a0.sF * b0.s3;
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload16(0, src_addr_a + 16);
b0 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.s0 * b0.s0;
c01 += (ushort)a0.s0 * b0.s1;
c02 += (ushort)a0.s0 * b0.s2;
c03 += (ushort)a0.s0 * b0.s3;
c10 += (ushort)a0.s1 * b0.s0;
c11 += (ushort)a0.s1 * b0.s1;
c12 += (ushort)a0.s1 * b0.s2;
c13 += (ushort)a0.s1 * b0.s3;
c20 += (ushort)a0.s2 * b0.s0;
c21 += (ushort)a0.s2 * b0.s1;
c22 += (ushort)a0.s2 * b0.s2;
c23 += (ushort)a0.s2 * b0.s3;
c30 += (ushort)a0.s3 * b0.s0;
c31 += (ushort)a0.s3 * b0.s1;
c32 += (ushort)a0.s3 * b0.s2;
c33 += (ushort)a0.s3 * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.s4 * b0.s0;
c01 += (ushort)a0.s4 * b0.s1;
c02 += (ushort)a0.s4 * b0.s2;
c03 += (ushort)a0.s4 * b0.s3;
c10 += (ushort)a0.s5 * b0.s0;
c11 += (ushort)a0.s5 * b0.s1;
c12 += (ushort)a0.s5 * b0.s2;
c13 += (ushort)a0.s5 * b0.s3;
c20 += (ushort)a0.s6 * b0.s0;
c21 += (ushort)a0.s6 * b0.s1;
c22 += (ushort)a0.s6 * b0.s2;
c23 += (ushort)a0.s6 * b0.s3;
c30 += (ushort)a0.s7 * b0.s0;
c31 += (ushort)a0.s7 * b0.s1;
c32 += (ushort)a0.s7 * b0.s2;
c33 += (ushort)a0.s7 * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.s8 * b0.s0;
c01 += (ushort)a0.s8 * b0.s1;
c02 += (ushort)a0.s8 * b0.s2;
c03 += (ushort)a0.s8 * b0.s3;
c10 += (ushort)a0.s9 * b0.s0;
c11 += (ushort)a0.s9 * b0.s1;
c12 += (ushort)a0.s9 * b0.s2;
c13 += (ushort)a0.s9 * b0.s3;
c20 += (ushort)a0.sA * b0.s0;
c21 += (ushort)a0.sA * b0.s1;
c22 += (ushort)a0.sA * b0.s2;
c23 += (ushort)a0.sA * b0.s3;
c30 += (ushort)a0.sB * b0.s0;
c31 += (ushort)a0.sB * b0.s1;
c32 += (ushort)a0.sB * b0.s2;
c33 += (ushort)a0.sB * b0.s3;
// Load values from matrix B (transposed)
b0 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
c00 += (ushort)a0.sC * b0.s0;
c01 += (ushort)a0.sC * b0.s1;
c02 += (ushort)a0.sC * b0.s2;
c03 += (ushort)a0.sC * b0.s3;
c10 += (ushort)a0.sD * b0.s0;
c11 += (ushort)a0.sD * b0.s1;
c12 += (ushort)a0.sD * b0.s2;
c13 += (ushort)a0.sD * b0.s3;
c20 += (ushort)a0.sE * b0.s0;
c21 += (ushort)a0.sE * b0.s1;
c22 += (ushort)a0.sE * b0.s2;
c23 += (ushort)a0.sE * b0.s3;
c30 += (ushort)a0.sF * b0.s0;
c31 += (ushort)a0.sF * b0.s1;
c32 += (ushort)a0.sF * b0.s2;
c33 += (ushort)a0.sF * b0.s3;
}
#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar4 a0 = vload4(0, src_addr_a);
uchar4 b0 = vload4(0, src_addr_b);
c00 += (ushort)a0.s0 * b0.s0;
c01 += (ushort)a0.s0 * b0.s1;
c02 += (ushort)a0.s0 * b0.s2;
c03 += (ushort)a0.s0 * b0.s3;
c10 += (ushort)a0.s1 * b0.s0;
c11 += (ushort)a0.s1 * b0.s1;
c12 += (ushort)a0.s1 * b0.s2;
c13 += (ushort)a0.s1 * b0.s3;
c20 += (ushort)a0.s2 * b0.s0;
c21 += (ushort)a0.s2 * b0.s1;
c22 += (ushort)a0.s2 * b0.s2;
c23 += (ushort)a0.s2 * b0.s3;
c30 += (ushort)a0.s3 * b0.s0;
c31 += (ushort)a0.s3 * b0.s1;
c32 += (ushort)a0.s3 * b0.s2;
c33 += (ushort)a0.s3 * b0.s3;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
vstore4((int4)(c10, c11, c12, c13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
vstore4((int4)(c20, c21, c22, c23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
vstore4((int4)(c30, c31, c32, c33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
vstore4((int4)(c10, c11, c12, c13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
vstore4((int4)(c20, c21, c22, c23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
vstore4((int4)(c30, c31, c32, c33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
/** This OpenCL kernel is optimized for Bifrost and computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel before running the matrix multiplication
*
* @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
* @note The transposition width step (mult_transpose1xW_width * 4) must be passed at compile time using -DTRANSPOSE1XW_WIDTH_STEP (i.e. -DTRANSPOSE1XW_WIDTH_STEP=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
const int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
const int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
const int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global uchar *src_addr_a = (__global uchar *)(src0_ptr + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr_b += (z % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr_b += z * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
// Compute end row address for matrix B
__global uchar *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
uint c00 = 0;
uint c01 = 0;
uint c02 = 0;
uint c03 = 0;
uint c10 = 0;
uint c11 = 0;
uint c12 = 0;
uint c13 = 0;
uint c20 = 0;
uint c21 = 0;
uint c22 = 0;
uint c23 = 0;
uint c30 = 0;
uint c31 = 0;
uint c32 = 0;
uint c33 = 0;
#if MULT_INTERLEAVE4X4_HEIGHT == 1
for(; src_addr_b <= (src_end_addr_b - (int)(32 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += (32 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (32 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar16 a0 = vload16(0, src_addr_a);
uchar4 b0 = vload4(0, src_addr_b);
uchar4 b1 = vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b2 = vload4(0, src_addr_b + 8 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b3 = vload4(0, src_addr_b + 12 * TRANSPOSE1XW_WIDTH_STEP);
// Accumulate
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload16(0, src_addr_a + 16);
b0 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
b1 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
b2 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
b3 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
// Accumulate
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
}
#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar4 a0 = vload4(0, src_addr_a);
uchar4 b0 = vload4(0, src_addr_b);
c00 += (ushort)a0.s0 * b0.s0;
c01 += (ushort)a0.s0 * b0.s1;
c02 += (ushort)a0.s0 * b0.s2;
c03 += (ushort)a0.s0 * b0.s3;
c10 += (ushort)a0.s1 * b0.s0;
c11 += (ushort)a0.s1 * b0.s1;
c12 += (ushort)a0.s1 * b0.s2;
c13 += (ushort)a0.s1 * b0.s3;
c20 += (ushort)a0.s2 * b0.s0;
c21 += (ushort)a0.s2 * b0.s1;
c22 += (ushort)a0.s2 * b0.s2;
c23 += (ushort)a0.s2 * b0.s3;
c30 += (ushort)a0.s3 * b0.s0;
c31 += (ushort)a0.s3 * b0.s1;
c32 += (ushort)a0.s3 * b0.s2;
c33 += (ushort)a0.s3 * b0.s3;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
vstore4((int4)(c10, c11, c12, c13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
vstore4((int4)(c20, c21, c22, c23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
vstore4((int4)(c30, c31, c32, c33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
vstore4((int4)(c10, c11, c12, c13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
vstore4((int4)(c20, c21, c22, c23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
vstore4((int4)(c30, c31, c32, c33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(COLS_B) && defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(TRANSPOSE1XW_WIDTH_STEP)
#if defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#define VECTOR_UCHAR VEC_DATA_TYPE(uchar, NUM_ELEMS_PROCESSED_PER_THREAD_X)
#define VECTOR_UINT VEC_DATA_TYPE(uint, NUM_ELEMS_PROCESSED_PER_THREAD_X)
#define VECTOR_INT VEC_DATA_TYPE(int, NUM_ELEMS_PROCESSED_PER_THREAD_X)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_midgard(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint src_cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx;
#if defined(REINTERPRET_INPUT_AS_3D)
// Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
zin = min(DEPTH_GEMM3D - 1, zin);
// Add offset due to the cross plane paddings
zin *= (src_cross_plane_pad * src0_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src0_stride_z by DEPTH_GEMM3D
src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
#else // defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
#endif // defined(REINTERPRET_INPUT_AS_3D)
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + COLS_A;
VECTOR_UINT acc0 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VECTOR_UINT acc1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VECTOR_UINT acc2 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VECTOR_UINT acc3 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
VECTOR_UINT acc4 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
for(; src_addr.s0 <= (end_row_vec_a - 2); src_addr += (int2)(2, 2 * src1_stride_y))
{
// Load values from matrix A
uchar2 a0 = vload2(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar2 a1 = vload2(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar2 a2 = vload2(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar2 a3 = vload2(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar2 a4 = vload2(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
VECTOR_UCHAR b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1 + src1_stride_y);
// Accumulate
acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0.s0;
acc0 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a0.s1;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1.s0;
acc1 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a1.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2.s0;
acc2 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a2.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3.s0;
acc3 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a3.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
acc4 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a4.s0;
acc4 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a4.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
// Load values from matrix A
uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
// Accumulate
acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
acc4 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a4;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
const int z = get_global_id(2);
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint8 zout = ((uint8)(0, 1, 2, 3, 4, 5, 6, 7) + (uint8)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint8)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store the result
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc0, VECTOR_INT), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc1, VECTOR_INT), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc2, VECTOR_INT), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc3, VECTOR_INT), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc4, VECTOR_INT), 0, (__global int *)(dst.ptr + 4 * dst_stride_y + zout.s4));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store the result
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc0, VECTOR_INT), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc1, VECTOR_INT), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc2, VECTOR_INT), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc3, VECTOR_INT), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(CONVERT(acc4, VECTOR_INT), 0, (__global int *)(dst.ptr + 4 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
/** OpenCL kernel optimized for Bifrost architectures that computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint src_cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx;
#if defined(REINTERPRET_INPUT_AS_3D)
// Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
zin = min(DEPTH_GEMM3D - 1, zin);
// Add offset due to the cross plane paddings
zin *= (src_cross_plane_pad * src0_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src0_stride_z by DEPTH_GEMM3D
src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
#else // defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
#endif // defined(REINTERPRET_INPUT_AS_3D)
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + COLS_A;
uint acc00 = 0;
uint acc01 = 0;
uint acc02 = 0;
uint acc03 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uint acc10 = 0;
uint acc11 = 0;
uint acc12 = 0;
uint acc13 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uint acc20 = 0;
uint acc21 = 0;
uint acc22 = 0;
uint acc23 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uint acc30 = 0;
uint acc31 = 0;
uint acc32 = 0;
uint acc33 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uint acc40 = 0;
uint acc41 = 0;
uint acc42 = 0;
uint acc43 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
for(; src_addr.s0 <= (end_row_vec_a - 4); src_addr += (int2)(4, 4 * src1_stride_y))
{
// Load values from matrix A
uchar4 a0 = vload4(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar4 a1 = vload4(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar4 a2 = vload4(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar4 a3 = vload4(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar4 a4 = vload4(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
uchar4 b0 = vload4(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
uchar4 b1 = vload4(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
uchar4 b2 = vload4(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
uchar4 b3 = vload4(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a0.s0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a0.s0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a0.s0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a0.s0;
ushort tmp4 = (ushort)b1.s0 * (ushort)a0.s1;
ushort tmp5 = (ushort)b1.s1 * (ushort)a0.s1;
ushort tmp6 = (ushort)b1.s2 * (ushort)a0.s1;
ushort tmp7 = (ushort)b1.s3 * (ushort)a0.s1;
ushort tmp8 = (ushort)b2.s0 * (ushort)a0.s2;
ushort tmp9 = (ushort)b2.s1 * (ushort)a0.s2;
ushort tmpA = (ushort)b2.s2 * (ushort)a0.s2;
ushort tmpB = (ushort)b2.s3 * (ushort)a0.s2;
ushort tmpC = (ushort)b3.s0 * (ushort)a0.s3;
ushort tmpD = (ushort)b3.s1 * (ushort)a0.s3;
ushort tmpE = (ushort)b3.s2 * (ushort)a0.s3;
ushort tmpF = (ushort)b3.s3 * (ushort)a0.s3;
acc00 += ((uint)tmp0 + (uint)tmp4 + (uint)tmp8 + (uint)tmpC);
acc01 += ((uint)tmp1 + (uint)tmp5 + (uint)tmp9 + (uint)tmpD);
acc02 += ((uint)tmp2 + (uint)tmp6 + (uint)tmpA + (uint)tmpE);
acc03 += ((uint)tmp3 + (uint)tmp7 + (uint)tmpB + (uint)tmpF);
}
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a1.s0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a1.s0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a1.s0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a1.s0;
ushort tmp4 = (ushort)b1.s0 * (ushort)a1.s1;
ushort tmp5 = (ushort)b1.s1 * (ushort)a1.s1;
ushort tmp6 = (ushort)b1.s2 * (ushort)a1.s1;
ushort tmp7 = (ushort)b1.s3 * (ushort)a1.s1;
ushort tmp8 = (ushort)b2.s0 * (ushort)a1.s2;
ushort tmp9 = (ushort)b2.s1 * (ushort)a1.s2;
ushort tmpA = (ushort)b2.s2 * (ushort)a1.s2;
ushort tmpB = (ushort)b2.s3 * (ushort)a1.s2;
ushort tmpC = (ushort)b3.s0 * (ushort)a1.s3;
ushort tmpD = (ushort)b3.s1 * (ushort)a1.s3;
ushort tmpE = (ushort)b3.s2 * (ushort)a1.s3;
ushort tmpF = (ushort)b3.s3 * (ushort)a1.s3;
acc10 += ((uint)tmp0 + (uint)tmp4 + (uint)tmp8 + (uint)tmpC);
acc11 += ((uint)tmp1 + (uint)tmp5 + (uint)tmp9 + (uint)tmpD);
acc12 += ((uint)tmp2 + (uint)tmp6 + (uint)tmpA + (uint)tmpE);
acc13 += ((uint)tmp3 + (uint)tmp7 + (uint)tmpB + (uint)tmpF);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a2.s0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a2.s0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a2.s0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a2.s0;
ushort tmp4 = (ushort)b1.s0 * (ushort)a2.s1;
ushort tmp5 = (ushort)b1.s1 * (ushort)a2.s1;
ushort tmp6 = (ushort)b1.s2 * (ushort)a2.s1;
ushort tmp7 = (ushort)b1.s3 * (ushort)a2.s1;
ushort tmp8 = (ushort)b2.s0 * (ushort)a2.s2;
ushort tmp9 = (ushort)b2.s1 * (ushort)a2.s2;
ushort tmpA = (ushort)b2.s2 * (ushort)a2.s2;
ushort tmpB = (ushort)b2.s3 * (ushort)a2.s2;
ushort tmpC = (ushort)b3.s0 * (ushort)a2.s3;
ushort tmpD = (ushort)b3.s1 * (ushort)a2.s3;
ushort tmpE = (ushort)b3.s2 * (ushort)a2.s3;
ushort tmpF = (ushort)b3.s3 * (ushort)a2.s3;
acc20 += ((uint)tmp0 + (uint)tmp4 + (uint)tmp8 + (uint)tmpC);
acc21 += ((uint)tmp1 + (uint)tmp5 + (uint)tmp9 + (uint)tmpD);
acc22 += ((uint)tmp2 + (uint)tmp6 + (uint)tmpA + (uint)tmpE);
acc23 += ((uint)tmp3 + (uint)tmp7 + (uint)tmpB + (uint)tmpF);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a3.s0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a3.s0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a3.s0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a3.s0;
ushort tmp4 = (ushort)b1.s0 * (ushort)a3.s1;
ushort tmp5 = (ushort)b1.s1 * (ushort)a3.s1;
ushort tmp6 = (ushort)b1.s2 * (ushort)a3.s1;
ushort tmp7 = (ushort)b1.s3 * (ushort)a3.s1;
ushort tmp8 = (ushort)b2.s0 * (ushort)a3.s2;
ushort tmp9 = (ushort)b2.s1 * (ushort)a3.s2;
ushort tmpA = (ushort)b2.s2 * (ushort)a3.s2;
ushort tmpB = (ushort)b2.s3 * (ushort)a3.s2;
ushort tmpC = (ushort)b3.s0 * (ushort)a3.s3;
ushort tmpD = (ushort)b3.s1 * (ushort)a3.s3;
ushort tmpE = (ushort)b3.s2 * (ushort)a3.s3;
ushort tmpF = (ushort)b3.s3 * (ushort)a3.s3;
acc30 += ((uint)tmp0 + (uint)tmp4 + (uint)tmp8 + (uint)tmpC);
acc31 += ((uint)tmp1 + (uint)tmp5 + (uint)tmp9 + (uint)tmpD);
acc32 += ((uint)tmp2 + (uint)tmp6 + (uint)tmpA + (uint)tmpE);
acc33 += ((uint)tmp3 + (uint)tmp7 + (uint)tmpB + (uint)tmpF);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a4.s0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a4.s0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a4.s0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a4.s0;
ushort tmp4 = (ushort)b1.s0 * (ushort)a4.s1;
ushort tmp5 = (ushort)b1.s1 * (ushort)a4.s1;
ushort tmp6 = (ushort)b1.s2 * (ushort)a4.s1;
ushort tmp7 = (ushort)b1.s3 * (ushort)a4.s1;
ushort tmp8 = (ushort)b2.s0 * (ushort)a4.s2;
ushort tmp9 = (ushort)b2.s1 * (ushort)a4.s2;
ushort tmpA = (ushort)b2.s2 * (ushort)a4.s2;
ushort tmpB = (ushort)b2.s3 * (ushort)a4.s2;
ushort tmpC = (ushort)b3.s0 * (ushort)a4.s3;
ushort tmpD = (ushort)b3.s1 * (ushort)a4.s3;
ushort tmpE = (ushort)b3.s2 * (ushort)a4.s3;
ushort tmpF = (ushort)b3.s3 * (ushort)a4.s3;
acc40 += ((uint)tmp0 + (uint)tmp4 + (uint)tmp8 + (uint)tmpC);
acc41 += ((uint)tmp1 + (uint)tmp5 + (uint)tmp9 + (uint)tmpD);
acc42 += ((uint)tmp2 + (uint)tmp6 + (uint)tmpA + (uint)tmpE);
acc43 += ((uint)tmp3 + (uint)tmp7 + (uint)tmpB + (uint)tmpF);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
// Load values from matrix A
uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
uchar4 b0 = vload4(0, src1_ptr + src_addr.s1);
// Accumulate
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a0;
acc00 += ((uint)tmp0);
acc01 += ((uint)tmp1);
acc02 += ((uint)tmp2);
acc03 += ((uint)tmp3);
}
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a1;
ushort tmp1 = (ushort)b0.s1 * (ushort)a1;
ushort tmp2 = (ushort)b0.s2 * (ushort)a1;
ushort tmp3 = (ushort)b0.s3 * (ushort)a1;
acc10 += ((uint)tmp0);
acc11 += ((uint)tmp1);
acc12 += ((uint)tmp2);
acc13 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a2;
ushort tmp1 = (ushort)b0.s1 * (ushort)a2;
ushort tmp2 = (ushort)b0.s2 * (ushort)a2;
ushort tmp3 = (ushort)b0.s3 * (ushort)a2;
acc20 += ((uint)tmp0);
acc21 += ((uint)tmp1);
acc22 += ((uint)tmp2);
acc23 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a3;
ushort tmp1 = (ushort)b0.s1 * (ushort)a3;
ushort tmp2 = (ushort)b0.s2 * (ushort)a3;
ushort tmp3 = (ushort)b0.s3 * (ushort)a3;
acc30 += ((uint)tmp0);
acc31 += ((uint)tmp1);
acc32 += ((uint)tmp2);
acc33 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a4;
ushort tmp1 = (ushort)b0.s1 * (ushort)a4;
ushort tmp2 = (ushort)b0.s2 * (ushort)a4;
ushort tmp3 = (ushort)b0.s3 * (ushort)a4;
acc40 += ((uint)tmp0);
acc41 += ((uint)tmp1);
acc42 += ((uint)tmp2);
acc43 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
const int z = get_global_id(2);
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint8 zout = ((uint8)(0, 1, 2, 3, 4, 5, 6, 7) + (uint8)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint8)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store the result
vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y + zout.s4));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store the result
vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
/** OpenCL kernel optimized to use dot product that computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
* -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
__kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint src_cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D)
)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx;
#if defined(REINTERPRET_INPUT_AS_3D)
// Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
zin = min(DEPTH_GEMM3D - 1, zin);
// Add offset due to the cross plane paddings
zin *= (src_cross_plane_pad * src0_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src0_stride_z by DEPTH_GEMM3D
src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
#else // defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
#endif // defined(REINTERPRET_INPUT_AS_3D)
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
src_addr.s1 += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
int end_row_vec_a = src_addr.s0 + COLS_A;
uint acc00 = 0;
uint acc01 = 0;
uint acc02 = 0;
uint acc03 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uint acc10 = 0;
uint acc11 = 0;
uint acc12 = 0;
uint acc13 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uint acc20 = 0;
uint acc21 = 0;
uint acc22 = 0;
uint acc23 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uint acc30 = 0;
uint acc31 = 0;
uint acc32 = 0;
uint acc33 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uint acc40 = 0;
uint acc41 = 0;
uint acc42 = 0;
uint acc43 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
for(; src_addr.s0 <= (end_row_vec_a - 4); src_addr += (int2)(4, 4 * src1_stride_y))
{
// Load values from matrix A
uchar4 a0 = vload4(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar4 a1 = vload4(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar4 a2 = vload4(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar4 a3 = vload4(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar4 a4 = vload4(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
uchar4 b0 = vload4(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
uchar4 b1 = vload4(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
uchar4 b2 = vload4(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
uchar4 b3 = vload4(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
{
// Accumulate
ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a0.s0, a0.s1, a0.s2, a0.s3, acc00);
ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a0.s0, a0.s1, a0.s2, a0.s3, acc01);
ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a0.s0, a0.s1, a0.s2, a0.s3, acc02);
ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a0.s0, a0.s1, a0.s2, a0.s3, acc03);
}
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
{
// Accumulate
ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a1.s0, a1.s1, a1.s2, a1.s3, acc10);
ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a1.s0, a1.s1, a1.s2, a1.s3, acc11);
ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a1.s0, a1.s1, a1.s2, a1.s3, acc12);
ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a1.s0, a1.s1, a1.s2, a1.s3, acc13);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
{
// Accumulate
ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a2.s0, a2.s1, a2.s2, a2.s3, acc20);
ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a2.s0, a2.s1, a2.s2, a2.s3, acc21);
ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a2.s0, a2.s1, a2.s2, a2.s3, acc22);
ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a2.s0, a2.s1, a2.s2, a2.s3, acc23);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
{
// Accumulate
ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a3.s0, a3.s1, a3.s2, a3.s3, acc30);
ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a3.s0, a3.s1, a3.s2, a3.s3, acc31);
ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a3.s0, a3.s1, a3.s2, a3.s3, acc32);
ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a3.s0, a3.s1, a3.s2, a3.s3, acc33);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
{
// Accumulate
ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a4.s0, a4.s1, a4.s2, a4.s3, acc40);
ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a4.s0, a4.s1, a4.s2, a4.s3, acc41);
ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a4.s0, a4.s1, a4.s2, a4.s3, acc42);
ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a4.s0, a4.s1, a4.s2, a4.s3, acc43);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
// Load values from matrix A
uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
uchar4 b0 = vload4(0, src1_ptr + src_addr.s1);
// Accumulate
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a0;
ushort tmp1 = (ushort)b0.s1 * (ushort)a0;
ushort tmp2 = (ushort)b0.s2 * (ushort)a0;
ushort tmp3 = (ushort)b0.s3 * (ushort)a0;
acc00 += ((uint)tmp0);
acc01 += ((uint)tmp1);
acc02 += ((uint)tmp2);
acc03 += ((uint)tmp3);
}
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a1;
ushort tmp1 = (ushort)b0.s1 * (ushort)a1;
ushort tmp2 = (ushort)b0.s2 * (ushort)a1;
ushort tmp3 = (ushort)b0.s3 * (ushort)a1;
acc10 += ((uint)tmp0);
acc11 += ((uint)tmp1);
acc12 += ((uint)tmp2);
acc13 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a2;
ushort tmp1 = (ushort)b0.s1 * (ushort)a2;
ushort tmp2 = (ushort)b0.s2 * (ushort)a2;
ushort tmp3 = (ushort)b0.s3 * (ushort)a2;
acc20 += ((uint)tmp0);
acc21 += ((uint)tmp1);
acc22 += ((uint)tmp2);
acc23 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a3;
ushort tmp1 = (ushort)b0.s1 * (ushort)a3;
ushort tmp2 = (ushort)b0.s2 * (ushort)a3;
ushort tmp3 = (ushort)b0.s3 * (ushort)a3;
acc30 += ((uint)tmp0);
acc31 += ((uint)tmp1);
acc32 += ((uint)tmp2);
acc33 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
{
// Accumulate
ushort tmp0 = (ushort)b0.s0 * (ushort)a4;
ushort tmp1 = (ushort)b0.s1 * (ushort)a4;
ushort tmp2 = (ushort)b0.s2 * (ushort)a4;
ushort tmp3 = (ushort)b0.s3 * (ushort)a4;
acc40 += ((uint)tmp0);
acc41 += ((uint)tmp1);
acc42 += ((uint)tmp2);
acc43 += ((uint)tmp3);
}
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
const int z = get_global_id(2);
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
//
// | |
// | plane0 |
// | |
// |__________________|
// |******************|
// | cross_plane_pad |
// |******************|
// | |
// | plane1 |
// | |
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
uint8 zout = ((uint8)(0, 1, 2, 3, 4, 5, 6, 7) + (uint8)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint8)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
zout *= (dst_cross_plane_pad * dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
// Store the result
vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y + zout.s4));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
dst.ptr += z * dst_stride_z;
// Store the result
vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#if defined(COLS_A)
/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
*
* @note This stage is needed to handle the offset of matrix product
* https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
uint4 sum_row_u32 = (uint4)0;
uint sum_row = 0;
__global const uchar *matrix_a = (__global const uchar *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
int i = 0;
// This for loop performs 16 accumulations
for(; i <= ((int)COLS_A - 16); i += 16)
{
const uchar16 a0_u8 = vload16(0, matrix_a + i);
sum_row_u32 += convert_uint4(a0_u8.s0123) + convert_uint4(a0_u8.s4567) + convert_uint4(a0_u8.s89AB) + convert_uint4(a0_u8.sCDEF);
}
// This for loop performs the leftover accumulations
for(; i < COLS_A; ++i)
{
sum_row += matrix_a[i];
}
sum_row += sum_row_u32.s0 + sum_row_u32.s1 + sum_row_u32.s2 + sum_row_u32.s3;
*((__global int *)dst.ptr) = (int)sum_row;
}
#endif // defined(COLS_A)
#if defined(COLS_B) && defined(ROWS_B)
/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B.
*
* @note This stage is needed to handle the offset of matrix product
* https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
*
* @attention The number of matrix B columns and rows needs to be passed at compile time using -DCOLS_B and -DROWS_B
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
uint16 sum_col_u32 = (uint16)0;
__global const uchar *matrix_b = (__global const uchar *)(src.ptr + get_global_id(1) * src_stride_z);
int i = 0;
// This for loop performs 4 accumulations
for(; i <= ((int)ROWS_B - 4); i += 4)
{
const uchar16 b0_u8 = vload16(0, matrix_b + 0 * src_stride_y);
const uchar16 b1_u8 = vload16(0, matrix_b + 1 * src_stride_y);
const uchar16 b2_u8 = vload16(0, matrix_b + 2 * src_stride_y);
const uchar16 b3_u8 = vload16(0, matrix_b + 3 * src_stride_y);
sum_col_u32 += convert_uint16(b0_u8) + convert_uint16(b1_u8) + convert_uint16(b2_u8) + convert_uint16(b3_u8);
matrix_b += 4 * src_stride_y;
}
// This for loop perfoms the leftover accumulations
for(; i < (int)ROWS_B; ++i)
{
const uchar16 b0_u8 = vload16(0, matrix_b);
sum_col_u32 += convert_uint16(b0_u8);
matrix_b += src_stride_y;
}
vstore16(convert_int16(sum_col_u32), 0, (__global int *)dst.ptr);
}
#endif // defined(COLS_B) && defined(ROWS_B)
#if defined(K_OFFSET)
/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel. The computation is performed in-place
*
* This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
* and adds to it the offset contribution of matrix A and matrix B in-place.
*
* @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
* @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
* @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
* @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
*
* The final result is:
*
* mm_result[i][k] = mm_result[i][k] +
* (sum_col[k] * A_OFFSET) +
* (sum_row[i] * B_OFFSET) +
* (K_OFFSET)
*
* @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_col_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
* @param[in] sum_col_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_col_step_x sum_col_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_col_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_col_step_y sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_col_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_row_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
* @param[in] sum_row_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_row_step_x sum_row_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_row_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_row_step_y sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_row_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
,
IMAGE_DECLARATION(sum_col)
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
,
IMAGE_DECLARATION(sum_row)
#endif // defined(B_OFFSET)
)
{
Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
const int y = get_global_id(1);
const int z = get_global_id(2);
int4 a_offset_s32 = (int4)0;
int4 b_offset_s32 = (int4)0;
int batch_id = z;
#if defined(DEPTH_INPUT3D)
batch_id /= (int)DEPTH_INPUT3D;
#endif // defined(DEPTH_INPUT3D)
#if defined(A_OFFSET)
Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
// Compute the offset contribution due to A_OFFSET
#if defined(SUM_COL_HAS_BATCHES)
a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr + batch_id * sum_col_stride_y));
#else // defined(MATRIX_B_HAS_BATCHES)
a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr));
#endif // defined(MATRIX_B_HAS_BATCHES)
a_offset_s32 *= (int4)A_OFFSET;
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
// Compute the offset contribution due to B_OFFSET
#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D + y);
#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + y);
#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
b_offset_s32 *= (int4)B_OFFSET;
#endif // defined(B_OFFSET)
const int4 offset_term_s32 = (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
int4 in_s32 = vload4(0, (__global int *)mm_result.ptr);
// Add the offset terms to GEMM's result
in_s32 += offset_term_s32;
// Store the result with the offset contribution
vstore4(in_s32, 0, (__global int *)mm_result.ptr);
}
#endif // defined(K_OFFSET)
#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
*
* This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8 value.
* The following computations will be performed by the kernel:
*
* -# Add offset terms to final result
* -# Multiply each entry of result by result_mult_int
* -# Add bias to final result (if -DADD_BIAS is passed at compile time)
* -# Shift the int32 accumulator by result_shift
* -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
* @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
* These values can be used to implement "rectified linear unit" activation functions
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#if defined(ADD_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
#endif // defined(ADD_BIAS)
int16 input_values = vload16(0, (__global int *)src.ptr);
// Add the offset terms to GEMM's result
input_values += (int16)RESULT_OFFSET;
#if defined(ADD_BIAS)
// Add bias
const int16 biases_values = vload16(0, (__global int *)biases.ptr);
input_values += (int16)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
input_values *= RESULT_MULT_INT;
input_values >>= RESULT_SHIFT;
uchar16 res = convert_uchar16_sat(input_values);
#if defined(MIN_BOUND)
res = max(res, (uchar16)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
res = min(res, (uchar16)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
vstore16(res, 0, dst.ptr);
}
#endif // defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
#if defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)
/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
*
* This kernel takes a final int32 accumulator value (the output of @ref CLGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8 value.
* The following computations will be performed by the kernel:
*
* -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
* -# Add bias to final result if bias tensor is not a nullptr
* -# Round to nearest division by a power-of-two using result_shift
* -# Add offset to each result
* -# Clamp the value between the specified min and max bounds
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
* @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
* These values can be used to implement "rectified linear unit" activation functions
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down_fixedpoint(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#if defined(ADD_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
#endif // defined(ADD_BIAS)
int16 input_values = vload16(0, (__global int *)src.ptr);
#if defined(ADD_BIAS)
// Add bias
const int16 biases_values = vload16(0, (__global int *)biases.ptr);
input_values += (int16)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 16);
// Add the offset terms to GEMM's result
input_values += (int16)RESULT_OFFSET_AFTER_SHIFT;
uchar16 res = convert_uchar16_sat(input_values);
#if defined(MIN_BOUND)
res = max(res, (uchar16)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
res = min(res, (uchar16)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
vstore16(res, 0, dst.ptr);
}
#endif // defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)