blob: 9a2a4890f3ed93ba0eccecc20a7d32ace1b9acf3 [file] [log] [blame]
/*
* Copyright (c) 2022-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/utils/ActivationFunctionUtils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/helpers/float_ops.h"
#include "src/gpu/cl/kernels/gemm/ClGemmHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
using ElementsProcessed = Steps;
// Block size dimensions for the MMUL extension
constexpr int mmul_m0 = 4;
constexpr int mmul_n0 = 4;
constexpr int mmul_k0 = 4;
Status validate_arguments(const ITensorInfo *src0,
const ITensorInfo *src1,
const ITensorInfo *src2,
const ITensorInfo *dst,
float alpha,
float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!arm_matrix_multiply_supported(CLKernelLibrary::get().get_device()),
"The extension cl_arm_matrix_multiply is not supported on the target platform");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4,
"The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3,
"The number of dimensions for the RHS matrix must be <= 3");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lhs_info.m0 < 1, "Only values greater than 0 are supported for m0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.n0 != 1 && rhs_info.n0 != 2 && rhs_info.n0 != 3 && rhs_info.n0 != 4 &&
rhs_info.n0 != 8 && rhs_info.n0 != 16,
"Only 1,2,3,4,8, and 16 are supported for n0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.k0 != 1 || lhs_info.k0 != 1), "Only 1 is supported for k0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.h0 != 4), "Only 4 is supported for h0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.interleave != true,
"Only true is supported for interleave with mmul extension enabled");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.transpose != false,
"Only false is supported for transpose with mmul extension enabled");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
ARM_COMPUTE_RETURN_ON_ERROR(gemm::validate_image2d_support_on_rhs(*src1, rhs_info));
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
const unsigned int k = gemm_info.k;
ARM_COMPUTE_UNUSED(m);
ARM_COMPUTE_UNUSED(n);
ARM_COMPUTE_UNUSED(k);
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != k);
// Validate the reinterpreted-as-3D-case
if (gemm_info.depth_output_gemm3d != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != m);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != m);
}
// Validate the gemm-batched case
if (src1->num_dimensions() > 2)
{
if (gemm_info.depth_output_gemm3d != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(3) != src1->dimension(2));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(2) != src1->dimension(2));
}
}
if (src2 != nullptr && !(helpers::float_ops::is_zero(beta)))
{
const unsigned int src2_dim0 = src2->dimension(0);
const unsigned int src2_dim1 = src2->dimension(1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1);
if (gemm_info.broadcast_bias)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n),
"Incorrect dimension of bias matrix which is to be broadcasted");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix");
}
}
TensorShape tensor_shape1{src1->tensor_shape()};
tensor_shape1.set(0, n);
tensor_shape1.set(1, k);
const TensorInfo tensor_info1 = src1->clone()->set_tensor_shape(tensor_shape1);
const TensorInfo tensor_info_reshaped1 =
src1->clone()->set_tensor_shape(misc::shape_calculator::compute_rhs_reshaped_shape(tensor_info1, rhs_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
if (dst->total_size() != 0)
{
const TensorInfo tensor_info_dst =
dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src0,
ITensorInfo *src1,
ITensorInfo *src2,
ITensorInfo *dst,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(src0, src1, src2);
bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
// dst tensor auto initialization if not yet initialized
auto_init_if_empty(
*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
TensorInfo tmp_info(*dst);
if (reinterpret_output_as_3d)
{
// Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(dst->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
Window win = calculate_max_window(tmp_info, Steps(1, 1));
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
Window collapsed = win.collapse(win, dimension_to_collapse);
// Reconfigure window size, one arm_matrix_multiply kernel needs 16 threads to finish.
Window::Dimension x_dimension = collapsed.x();
Window::Dimension y_dimension = collapsed.y();
// Make M and N multiple of M0 and N0 respectively
const unsigned int ceil_to_multiple_n_n0 = ceil_to_multiple(x_dimension.end(), rhs_info.n0);
const unsigned int ceil_to_multiple_m_m0 = ceil_to_multiple(y_dimension.end(), lhs_info.m0);
// Divide M and N by M0 and N0 respectively
const unsigned int n_div_n0 = ceil_to_multiple_n_n0 / rhs_info.n0;
const unsigned int m_div_m0 = ceil_to_multiple_m_m0 / lhs_info.m0;
// Make n_div_n0 and m_div_m0 multiple of mmul_n0 and mmul_k0 respectively
const unsigned int ceil_to_multiple_n_div_n0_mmul_n0 = ceil_to_multiple(n_div_n0, mmul_n0);
const unsigned int ceil_to_multiple_m_div_m0_mmul_k0 = ceil_to_multiple(m_div_m0, mmul_k0);
// Ensure x_dimension is multiple of MMUL block size (mmul_n0 * mmul_k0)
x_dimension.set_end(ceil_to_multiple_n_div_n0_mmul_n0 * mmul_k0);
y_dimension.set_end(ceil_to_multiple_m_div_m0_mmul_k0 / mmul_k0);
collapsed.set(Window::DimX, x_dimension);
collapsed.set(Window::DimY, y_dimension);
return std::make_pair(Status{}, collapsed);
}
} // namespace
ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel()
{
_type = CLKernelType::GEMM;
}
void ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::configure(const CLCompileContext &compile_context,
ITensorInfo *src0,
ITensorInfo *src1,
ITensorInfo *src2,
ITensorInfo *dst,
float alpha,
float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
// dst tensor auto initialization if not yet initialized
auto_init_if_empty(
*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
auto padding_info = get_padding_info({src0, src1, src2, dst});
_add_bias = src2 != nullptr;
_export_to_cl_image = rhs_info.export_to_cl_image;
// Configure kernel window
auto win_config = validate_and_configure_window(src0, src1, src2, dst, lhs_info, rhs_info, gemm_info);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
IClKernel::configure_internal(win_config.second);
_m = gemm_info.m;
_n = gemm_info.n;
_k = gemm_info.k;
const unsigned int m0_leftover = _m % lhs_info.m0;
const unsigned int n0_leftover = _n % rhs_info.n0;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)),
"-DALPHA=" + float_to_string_with_full_precision(alpha));
build_opts.add_option_if(src2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS");
build_opts.add_option_if(src0->data_type() == DataType::F16, "-DHALF_PRECISION");
build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
build_opts.add_option("-DM0_LEFTOVER=" + support::cpp11::to_string(m0_leftover));
build_opts.add_option("-DN0_LEFTOVER=" + support::cpp11::to_string(n0_leftover));
build_opts.add_option("-DMMUL_M0=" + support::cpp11::to_string(mmul_m0));
build_opts.add_option("-DMMUL_N0=" + support::cpp11::to_string(mmul_n0));
build_opts.add_option("-DMMUL_K0=" + support::cpp11::to_string(mmul_k0));
build_opts.add_option("-DACTIVATION_TYPE=" +
lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
std::string kernel_name("gemm_mm_reshaped_only_rhs_nt_mmul");
kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (_add_bias ? "add_bias_" : "");
_config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : "");
_config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
_config_id += lower_string(string_from_data_type(src0->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(_m);
_config_id += "_";
_config_id += support::cpp11::to_string(_n);
_config_id += "_";
_config_id += support::cpp11::to_string(_k);
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::validate(const ITensorInfo *src0,
const ITensorInfo *src1,
const ITensorInfo *src2,
const ITensorInfo *dst,
float alpha,
float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(), src1->clone().get(),
src2 != nullptr ? src2->clone().get() : nullptr,
dst->clone().get(), lhs_info, rhs_info, gemm_info)
.first);
return Status{};
}
void ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::run_op(ITensorPack &tensors,
const Window &window,
cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src0 =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src1 =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
const auto src2 =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_ON(_add_bias && src2 == nullptr);
if (src1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
}
cl::Image2D src1_image2d;
if (_export_to_cl_image)
{
const TensorShape shape2d(src1->info()->dimension(0) / 4,
src1->info()->dimension(1) * src1->info()->dimension(2));
const size_t image_row_pitch = src1->info()->strides_in_bytes()[1];
src1_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), src1->cl_buffer(), shape2d,
src1->info()->data_type(), image_row_pitch, CLImage2DType::ReadOnly);
}
Window slice = window.first_slice_window_3D();
do
{
unsigned int idx = 0;
add_3d_tensor_nhw_argument(idx, src0);
if (_export_to_cl_image)
{
_kernel.setArg(idx++, src1_image2d);
}
add_3d_tensor_nhw_argument(idx, src1);
// Bias buffer (_add_bias == true)
if (_add_bias)
{
add_3d_tensor_nhw_argument(idx, src2);
}
// dst buffer
add_3d_tensor_nhw_argument(idx, dst);
// Pass m, n and k at runtime as signed ints, to ensure results of any subtractions they could be operand in, would still be signed.
_kernel.setArg<cl_int>(idx++, _m);
_kernel.setArg<cl_int>(idx++, _n);
_kernel.setArg<cl_int>(idx++, _k);
// LWS_x should be multiple of 16 at least. (32, 2) has been chosen to have more work-items on a single core
// LWS also enforces the order of execution of the workitems which improves cache utilization
enqueue(queue, *this, slice, cl::NDRange(32, 2), false);
} while (window.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute