blob: 40b5a2beb0ca32e5400b621229d0abb80c853cb9 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers_cs.h"
#if defined(DATA_TYPE_FP16)
precision mediump float;
#endif // DATA_TYPE_FP16
#ifdef RESHAPE_TO_COLUMNS
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
* @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_attrs The attributes of the biases tensor
* @param[in] width The width of the input tensor
* @param[in] height The height of the input tensor
* @param[in] depth The depth of the input tensor
* @param[in] total_filters Total number of filters. 4th dimension of the weights matrix
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
ImageAttributes dst_attrs;
#ifdef HAS_BIAS
VectorAttributes biases_attrs;
#endif /* HAS_BIAS */
uint width;
uint height;
uint depth;
uint total_filters;
};
#if defined(DATA_TYPE_FP32)
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
#ifdef HAS_BIAS
TENSOR_DECLARATION(3, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly);
#endif /* BIAS */
void main()
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
#ifdef HAS_BIAS
VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift);
#endif /* BIAS */
bool is_last_thread = (((int(gl_GlobalInvocationID.x)) == (int(gl_NumWorkGroups.x * gl_WorkGroupSize.x) - 1)) && ((int(gl_GlobalInvocationID.y)) == (int(gl_NumWorkGroups.y * gl_WorkGroupSize.y) - 1))
&& ((int(gl_GlobalInvocationID.z)) == (int(gl_NumWorkGroups.z * gl_WorkGroupSize.z) - 1)));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, ((uint(gl_GlobalInvocationID.x) * uint(dst_attrs.stride_y)) + (uint(gl_GlobalInvocationID.y) * uint(width) * uint(dst_attrs.stride_y)) + (uint(
gl_GlobalInvocationID.z)
* uint(width) * uint(height) * uint(dst_attrs.stride_y))));
// Linearize convolution elements
if(is_last_thread)
{
for(uint i = 0u; i < uint(total_filters); ++i)
{
float s0 = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, s0);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
#ifdef HAS_BIAS
float b = LOAD_CURRENT_ITEM(biases_ptr, biases_iter);
STORE(dst_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_y), b);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(biases_iter, biases_attrs.stride_x);
#endif /* HAS_BIAS */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_x);
}
}
else
{
for(uint i = 0u; i < uint(total_filters); ++i)
{
float s0 = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, s0);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_x);
}
}
}
#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly);
#ifdef HAS_BIAS
TENSOR_DECLARATION(3, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly);
#endif /* BIAS */
void main()
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
#ifdef HAS_BIAS
VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift);
#endif /* BIAS */
bool is_last_thread = (((int(gl_GlobalInvocationID.x)) == (int(gl_NumWorkGroups.x * gl_WorkGroupSize.x) - 1)) && ((int(gl_GlobalInvocationID.y)) == (int(gl_NumWorkGroups.y * gl_WorkGroupSize.y) - 1))
&& ((int(gl_GlobalInvocationID.z)) == (int(gl_NumWorkGroups.z * gl_WorkGroupSize.z) - 1)));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, ((uint(gl_GlobalInvocationID.x) * uint(dst_attrs.stride_y)) + (uint(gl_GlobalInvocationID.y) * uint(width) * uint(dst_attrs.stride_y)) + (uint(
gl_GlobalInvocationID.z)
* uint(width) * uint(height) * uint(dst_attrs.stride_y))));
// Linearize convolution elements
if(is_last_thread)
{
for(uint i = 0u; i < uint(total_filters); i = i + 2u)
{
vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
vec2 s;
if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
{
s.x = s0.x;
}
else
{
s.x = s0.y;
}
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
{
s.y = s1.x;
}
else
{
s.y = s1.y;
}
STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
#ifdef HAS_BIAS
vec2 b = LOAD_UNPACK2_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
STORE_PACK2_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_y), b);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(biases_iter, (2u * biases_attrs.stride_x));
#endif /* HAS_BIAS */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x));
}
}
else
{
for(uint i = 0u; i < uint(total_filters); i = i + 2u)
{
vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
vec2 s;
if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
{
s.x = s0.x;
}
else
{
s.x = s0.y;
}
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
{
s.y = s1.x;
}
else
{
s.y = s1.y;
}
STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x));
}
}
}
#endif /* DATA_TYPE_FP32 */
#endif // RESHAPE_TO_COLUMNS
#ifdef IM2COL_GENERIC
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
* @note PAD_LEFT/PAD_RIGHT/PAD_TOP/PAD_BOTTOM must be passed for padding info, e.g. "#define PAD_LEFT xxx"
* @note KERNEL_WIDTH/KERNEL_HEIGHT/KERNEL_DEPTH must be passed for kernel dimension, e.g. "#define KERNEL_WIDTH xxx"
* @note STRIDE_X/STRIDE_Y must be passed for stride info, e.g. "#define STRIDE_X xxx"
* @note CONVOLVED_WIDTH/CONVOLVED_HEIGHT must be passed for convolved dimension, e.g. "#define CONVOLVED_WIDTH xxx"
* @note SRC_WIDTH/SRC_HEIGHT must be passed for input dimension, e.g. "#define SRC_WIDTH xxx"
* @note DILATION_X/DILATION_Y must be passed for dilation sizes, e.g. "#define DILATION_X xxx"
* @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
ImageAttributes dst_attrs;
uint src_stride_w;
uint dst_stride_w;
};
#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
int xc = int(gl_GlobalInvocationID.x); // x coordinate in the convolved tensor
int yc = int(gl_GlobalInvocationID.y); // y coordinate in the convolved tensor
int ch = int(gl_GlobalInvocationID.z) % KERNEL_DEPTH; // input feature map
int batch = int(gl_GlobalInvocationID.z) / KERNEL_DEPTH; // the batch
// Calculate input indeces
int xi = xc * STRIDE_X - PAD_LEFT;
int yi = yc * STRIDE_Y - PAD_TOP;
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (ch * int(src_attrs.stride_z)) + (batch * int(src_stride_w)));
// Calculate output indeces
int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
// sizeof is not available in GLES, so we'll use stride_x
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (yo * int(dst_attrs.stride_y)) + (batch * int(dst_stride_w)) + xo * int(dst_attrs.stride_x));
uint src_pos = 0u;
// Linearize convolution elements
for(int y = yi, y_e = yi + KERNEL_HEIGHT * DILATION_Y; y < y_e; y += DILATION_Y)
{
for(int x = xi, x_e = xi + KERNEL_WIDTH * DILATION_X; x < x_e; x += DILATION_X, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, int(dst_attrs.stride_x)))
{
#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * int(src_attrs.stride_x) + y * int(src_attrs.stride_y));
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos));
#else /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */
if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
{
STORE_CURRENT_ITEM(dst_ptr, dst_iter, 0.0f);
}
else
{
src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * int(src_attrs.stride_x) + y * int(src_attrs.stride_y));
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos));
}
#endif /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */
}
}
#ifdef HAS_BIAS
if(ch == (KERNEL_DEPTH - 1))
{
STORE_CURRENT_ITEM(dst_ptr, dst_iter, 1.0f);
}
#endif /* HAS_BIAS */
}
#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly);
#ifdef KERNEL_1x1
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
uint xc = gl_GlobalInvocationID.x;
uint yc = gl_GlobalInvocationID.y;
uint zc = gl_GlobalInvocationID.z;
uint ch = zc % uint(KERNEL_DEPTH); // input feature map
uint batch = zc / uint(KERNEL_DEPTH); // the batch
// Calculate input indeces
uint xi = xc;
uint yi = yc;
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.step_z);
// Calculate output indeces
uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x;
uint xo = ch * dst_element_count;
uint yo = xc + yc * uint(CONVOLVED_WIDTH);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo);
bool x_start_even = ((xc % 2u) == 0u);
bool z_depth_even = ((uint(KERNEL_DEPTH) % 2u) == 0u);
uint input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y);
uint tmp_left = 0u;
uint tmp_right = 0u;
if(ch % 2u != 0u)
{
return;
}
if(z_depth_even || (!z_depth_even && (int(ch) < (KERNEL_DEPTH - 1))))
{
tmp_left = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y + src_attrs.stride_z);
tmp_right = LOAD(src_ptr, input_pos);
if(x_start_even)
{
tmp_right = (tmp_left & 0xffffu) + (tmp_right << 16u);
}
else
{
tmp_right = (tmp_left >> 16u) + (tmp_right & 0xffff0000u);
}
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
#ifdef HAS_BIAS
if(ch == (uint(KERNEL_DEPTH) - 2u))
{
mediump vec2 bias_vec = vec2(1.f, 0.f);
uint bias_u = packHalf2x16(bias_vec);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, bias_u);
}
#endif /* HAS_BIAS */
}
else
{
tmp_left = LOAD(src_ptr, input_pos);
if(x_start_even)
{
tmp_right = (tmp_left & 0xffffu);
}
else
{
tmp_right = (tmp_left >> 16u);
}
#ifdef HAS_BIAS
mediump vec2 bias_vec = vec2(0.f, 1.f);
uint bias_u = packHalf2x16(bias_vec);
tmp_right += (bias_u & 0xffff0000u);
#endif /* HAS_BIAS */
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
}
}
#else /* KERNEL_1x1 */
void main(void)
{
uint xc = gl_GlobalInvocationID.x;
uint yc = gl_GlobalInvocationID.y;
uint zc = gl_GlobalInvocationID.z;
uint ch = zc % uint(KERNEL_DEPTH); // input feature map
uint batch = zc / uint(KERNEL_DEPTH); // the batch
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
Tensor3DIterator src_iter_b = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
// Calculate input indeces
uint src_element_count = src_attrs.step_x / src_attrs.stride_x;
uint xi = (xc * uint(STRIDE_X)) / src_element_count;
uint yi = yc * uint(STRIDE_Y);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.stride_z);
// Calculate output indeces
uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x;
uint xo = (ch * uint(KERNEL_WIDTH) * uint(KERNEL_HEIGHT)) * dst_element_count;
uint yo = xc + yc * uint(CONVOLVED_WIDTH);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo);
bool x_start_even = ((xc * uint(STRIDE_X)) % 2u == 0u);
bool z_start_even = ((ch % 2u) == 0u);
uint input_pos = 0u;
uint tmp = 0u;
uint tmp_left = 0u;
uint tmp_right = 0u;
// Linearize convolution elements
for(uint y = yi, y_e = yi + uint(KERNEL_HEIGHT); y < y_e; ++y)
{
uint xstart = 0u;
uint xend = 0u;
// even col, even row
if(x_start_even)
{
if(((y - yi + ch) % 2u) == 0u)
{
for(uint x = xi, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos));
}
}
else
{
// 1st pair
if(!z_start_even && (y == yi))
{
// cross 2d feature map
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w +
(ch - 1u) * src_attrs.stride_z);
}
else
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter,
(xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y);
}
tmp_right = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
tmp_left = LOAD(src_ptr, input_pos);
tmp_right = (tmp_right & 0xffffu) + (tmp_left << 16u);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
// remaining
for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x - 1u) * src_attrs.step_x + y * src_attrs.stride_y);
tmp_left = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
tmp_right = LOAD(src_ptr, input_pos);
tmp_right = (tmp_left >> 16u) + (tmp_right << 16u);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
}
}
}
else
{
if((((y - yi) % 2u) == 0u && !z_start_even) || (((y - yi) % 2u) != 0u && z_start_even))
{
// 1st pair
if(y == yi)
{
// cross 2d feature map
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w +
(ch - 1u) * src_attrs.stride_z);
}
else
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter,
(xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y);
}
tmp_right = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
tmp_left = LOAD(src_ptr, input_pos);
tmp_right = (tmp_right >> 16u) + (tmp_left & 0xffff0000u);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
// remaining
for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos));
}
}
else if((((y - yi) % 2u) == 0u && z_start_even) || (((y - yi) % 2u) != 0u && !z_start_even))
{
// 1st pair
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
tmp_right = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (xi + 1u) * src_attrs.step_x + y * src_attrs.stride_y);
tmp_left = LOAD(src_ptr, input_pos);
tmp_right = (tmp_right >> 16u) + (tmp_left << 16u);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
// remaining
for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
{
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
tmp_right = LOAD(src_ptr, input_pos);
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x + 1u) * src_attrs.step_x + y * src_attrs.stride_y);
tmp_left = LOAD(src_ptr, input_pos);
tmp_right = (tmp_right >> 16u) + (tmp_left << 16u);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
}
}
}
}
// NOTE: must handle last element manually instead of in loops
// to avoid write conflict across 2d boundary
if(ch == uint(KERNEL_DEPTH) - 1u)
{
uint x = xi + (uint(KERNEL_WIDTH) / 2u);
uint y = yi + uint(KERNEL_HEIGHT) - 1u;
input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
tmp = LOAD(src_ptr, input_pos);
if(!x_start_even)
{
tmp = (tmp >> 16u) + (tmp << 16u);
}
#ifdef HAS_BIAS
mediump vec2 bias_vec = vec2(1.f, 1.f);
uint bias_u = packHalf2x16(bias_vec);
if(z_start_even)
{
tmp = (tmp & 0xffffu) + (bias_u & 0xffff0000u);
}
else
{
tmp = (bias_u & 0xffffu);
}
#endif /* HAS_BIAS */
STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp);
}
}
#endif /* KERNEL_1x1 */
#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
#endif /* IM2COL_GENERIC */
#ifdef IM2COL_REDUCED
/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note In case biases will be added in late stage, "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
* @param[in] width The width of the input tensor
* @param[in] height The height of the input tensor
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
VectorAttributes dst_attrs;
uint width;
uint height;
};
#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift);
uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
uvec3 size = uvec3(gl_WorkGroupSize.xyz);
uint image_size = width * height;
uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x + pos.y * width + pos.z * image_size);
STORE(dst_ptr, tmp_out_offset, LOAD_CURRENT_ITEM(src_ptr, src_iter));
#ifdef HAS_BIAS
// If it is the last thread in the 3 dimensional workgroup
if(pos.x == (size.x - 1) && pos.y == (size.y - 1) && pos.z == (size.z - 1))
{
tmp_out_offset += (dst_attrs.stride_x >> uint(2));
STORE(dst_ptr, tmp_out_offset, 1.f);
}
#endif // HAS_BIAS
}
#elif defined(DATA_TYPE_FP16)
#if defined(IM2COL_REDUCED_8X)
TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, restrict);
#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, restrict);
#else /* IM2COL_REDUCED_8X */
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict);
#endif /* IM2COL_REDUCED_8X */
#if defined(IM2COL_REDUCED_GENERIC)
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
Tensor3DIterator src_nostep_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift);
uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
uvec3 size = uvec3(gl_WorkGroupSize.xyz);
uint image_size = width * height;
uint element_count = src_attrs.step_x / src_attrs.stride_x;
uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * element_count + pos.y * width + pos.z * image_size);
uint width_fp16 = (width + uint(1)) >> uint(1);
uint tmp;
// odd width
if(width % uint(2) != uint(0))
{
// even row
if((pos.y + pos.z * height) % uint(2) == uint(0))
{
// skip last element of each line to avoid write conflict except for last line
if((pos.x < (width / element_count)) || ((pos.y == gl_NumWorkGroups.y - 1u) && (pos.z == gl_NumWorkGroups.z - 1u)))
{
tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE(dst_ptr, tmp_out_offset, tmp);
}
}
else
{
// special op
uint tmp_left = uint(0);
uint tmp_right = uint(0);
tmp_right = LOAD_CURRENT_ITEM(src_ptr, src_iter); //right half
if(pos.x == uint(0))
{
tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, int(width), int(pos.y) - 1, int(pos.z))); //left half
tmp_right = (tmp_left & uint(0xffff)) + (tmp_right << uint(16));
}
else
{
tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, (int(pos.x) - 1) * int(element_count), int(pos.y), int(pos.z)));
tmp_right = ((tmp_left >> uint(16)) + (tmp_right << uint(16)));
}
STORE(dst_ptr, tmp_out_offset, tmp_right);
}
}
else
{
tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE(dst_ptr, tmp_out_offset, tmp);
}
#ifdef HAS_BIAS
// If it is the last thread in the 3 dimensional workgroup
if(pos.x == (size.x - 1u) && pos.y == (size.y - 1u) && pos.z == (size.z - 1u))
{
tmp_out_offset += (dst_attrs.stride_x >> dst_shift);
// FIXME: need odd/even detection for tmp_out_offset?
mediump vec2 bias_vec = vec2(1.0f, 1.0f);
STORE_PACK2_HALF(dst_ptr, tmp_out_offset, bias_vec);
}
#endif // HAS_BIAS
}
#else /* IM2COL_REDUCED_GENERIC */
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift);
uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
#if defined(IM2COL_REDUCED_8X)
uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(8) + pos.y * width + pos.z * uint(IMAGE_SIZE));
uvec4 tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE(dst_ptr, tmp_out_offset, tmp);
#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(4) + pos.y * width + pos.z * uint(IMAGE_SIZE));
uvec2 tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE(dst_ptr, tmp_out_offset, tmp);
#else /* IM2COL_REDUCED_8X */
uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(2) + pos.y * width + pos.z * uint(IMAGE_SIZE));
uint tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter);
STORE(dst_ptr, tmp_out_offset, tmp);
#endif /* IM2COL_REDUCED_8X */
}
#endif /* IM2COL_REDUCED_GENERIC */
#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
#endif /* IM2COL_REDUCED */
#ifdef COL2IM
#ifdef WIDTH_OUTPUT
/** This kernel performs a reshaping of the output of the convolution layer.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
* @param[in] dst_depth The length of the destination tensor in Z dimension
* @param[in] dst_strideZ The actual stride of the destination tensor in Z dimension
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
Tensor3DAttributes dst_attrs;
uint dst_depth;
uint dst_strideZ;
};
#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, pos.x * src_attrs.step_y + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter));
}
#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
if((pos.z % dst_depth) % 2u == 0u)
{
uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ;
uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes);
uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y);
vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset);
vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset);
vec2 result = vec2(tmp1.x, tmp2.x);
STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
else
{
uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ - 2u;
uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes);
uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y);
vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset);
vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset);
vec2 result = vec2(tmp1.y, tmp2.y);
STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
}
#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
#endif /* WIDTH_OUTPUT */
#endif /* COL2IM */