blob: 014ff4045e78ba64683041e999edc89db598939d [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_CS_H
#define ARM_COMPUTE_HELPER_CS_H
#define SHADER_PARAMS_DECLARATION \
layout(std140, binding = 0) uniform shader_params
#define TENSOR_DECLARATION(location, buffer_type, type, ptr_name, shift_name, element_shift, access) \
layout(std430, binding = location) access buffer buffer_type \
{ \
type ptr_name[]; \
}; \
const uint shift_name = uint(element_shift)
struct VectorAttributes
{
uint stride_x; /**< Stride of the vector in X dimension (in bytes) */
uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */
uint offset_first_element_in_bytes; /**< The offset of the first element in the vector (in bytes) */
uint padding; /**< The padding to rounding up the structure to a multiple of a vec4 */
};
struct ImageAttributes
{
uint stride_x; /**< Stride of the image in X dimension (in bytes) */
uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */
uint stride_y; /**< Stride of the image in Y dimension (in bytes) */
uint step_y; /**< stride_y * number of elements along Y processed per workitem (in bytes) */
uint offset_first_element_in_bytes; /**< The offset of the first element in the image (in bytes) */
uint padding1; /**< The padding to rounding up the structure to a multiple of a vec4 */
uint padding2; /**< The padding to rounding up the structure to a multiple of a vec4 */
uint padding3; /**< The padding to rounding up the structure to a multiple of a vec4 */
};
struct Tensor3DAttributes
{
uint stride_x; /**< Stride of the tensor in X dimension (in bytes) */
uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */
uint stride_y; /**< Stride of the tensor in Y dimension (in bytes) */
uint step_y; /**< stride_y * number of elements along Y processed per workitem (in bytes) */
uint stride_z; /**< Stride of the tensor in Z dimension (in bytes) */
uint step_z; /**< stride_z * number of elements along Z processed per workitem (in bytes) */
uint offset_first_element_in_bytes; /**< The offset of the first element in the tensor (in bytes) */
uint padding; /**< The padding to rounding up the structure to a multiple of a vec4 */
};
struct VectorIterator
{
int current_offset_in_bytes; /**< Current offset of vector (in bytes) */
int stride_x; /**< Stride of the vector in X dimension (in bytes) */
int element_shift; /**< The number of bits to shift by for one element */
};
struct ImageIterator
{
int current_offset_in_bytes; /**< Current offset of image (in bytes) */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int element_shift; /**< The number of bits to shift by for one element */
};
struct Tensor3DIterator
{
int current_offset_in_bytes; /**< Current offset of tensor (in bytes) */
int stride_x; /**< Stride of the tensor in X dimension (in bytes) */
int stride_y; /**< Stride of the tensor in Y dimension (in bytes) */
int stride_z; /**< Stride of the tensor in Z dimension (in bytes) */
int element_shift; /**< The number of bits to shift by for one element */
};
#define CONVERT_TO_VECTOR_ITERATOR(attrs, element_shift) \
update_vector_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, attrs.step_x)
#define CONVERT_TO_VECTOR_ITERATOR_NO_STEP(attrs, element_shift) \
update_vector_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, uint(0))
#define CONVERT_TO_IMAGE_ITERATOR(attrs, element_shift) \
update_image_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y)
#define CONVERT_TO_IMAGE_ITERATOR_NO_STEP(attrs, element_shift) \
update_image_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, uint(0), attrs.stride_y, uint(0))
#define CONVERT_TO_TENSOR3D_ITERATOR(attrs, element_shift) \
update_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y, attrs.stride_z, attrs.step_z)
#define CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(attrs, element_shift) \
update_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, uint(0), attrs.stride_y, uint(0), attrs.stride_z, uint(0))
#define CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(attrs, element_shift) \
update_image_from_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y, attrs.stride_z, attrs.step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(attrs, element_shift) \
update_image_from_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \
attrs.stride_x, uint(0), attrs.stride_y, uint(0), attrs.stride_z, attrs.step_z)
/** Wrap vector information into a VectorIterator structure, and make the offset to be this workitem's position.
*
* @param[in] element_shift The number of bits to shift by for one element
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes)
*
* @return A VectorIterator object
*/
VectorIterator update_vector_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
VectorIterator vector_iter;
vector_iter.element_shift = int(element_shift);
vector_iter.stride_x = int(stride_x);
vector_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x);
return vector_iter;
}
/** Wrap image information into an ImageIterator structure, and make the offset to be this workitem's position.
*
* @param[in] element_shift The number of bits to shift by for one element
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes)
*
* @return An ImageIterator object
*/
ImageIterator update_image_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
ImageIterator image_iter;
image_iter.element_shift = int(element_shift);
image_iter.stride_x = int(stride_x);
image_iter.stride_y = int(stride_y);
image_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y);
return image_iter;
}
/** Wrap 3D tensor information into a Tensor3DIterator structure, and make the offset to be this workitem's position.
*
* @param[in] element_shift The number of bits to shift by for one element
* @param[in] offset_first_element_in_bytes The offset of the first element in the source tersor
* @param[in] stride_x Stride of the tersor in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes)
* @param[in] stride_y Stride of the tersor in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes)
* @param[in] stride_z Stride of the tersor in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem (in bytes)
*
* @return A 3D Tensor3DIterator object
*/
Tensor3DIterator update_tensor3D_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3DIterator tensor_iter;
tensor_iter.element_shift = int(element_shift);
tensor_iter.stride_x = int(stride_x);
tensor_iter.stride_y = int(stride_y);
tensor_iter.stride_z = int(stride_z);
tensor_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y + gl_GlobalInvocationID.z * step_z);
return tensor_iter;
}
/** Wrap 3D tensor information into an ImageIterator structure, and make the offset to be this workitem's position.
*
* @param[in] element_shift The number of bits to shift by for one element
* @param[in] offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] stride_x Stride of the tensor in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes)
* @param[in] stride_y Stride of the tensor in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes)
* @param[in] stride_z Stride of the tensor in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem (in bytes)
*
* @return An ImageIterator object
*/
ImageIterator update_image_from_tensor3D_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
ImageIterator image_iter;
image_iter.element_shift = int(element_shift);
image_iter.stride_x = int(stride_x);
image_iter.stride_y = int(stride_y);
image_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y + gl_GlobalInvocationID.z * step_z);
return image_iter;
}
#define VECTOR_OFFSET(tensor_iter, x) \
uint(vector_offset_in_bytes(tensor_iter, int(x)) >> tensor_iter.element_shift)
#define IMAGE_OFFSET(tensor_iter, x, y) \
uint(image_offset_in_bytes(tensor_iter, int(x), int(y)) >> tensor_iter.element_shift)
#define TENSOR3D_OFFSET(tensor_iter, x, y, z) \
uint(tensor3D_offset_in_bytes(tensor_iter, int(x), int(y), int(z)) >> tensor_iter.element_shift)
#define TENSOR_OFFSET_ADVANCE(tensor_iter, n) \
uint((tensor_iter.current_offset_in_bytes >> tensor_iter.element_shift) + int(n))
#define TENSOR_OFFSET_ADVANCE_IN_BYTES(tensor_iter, n) \
uint((tensor_iter.current_offset_in_bytes + int(n)) >> tensor_iter.element_shift)
#define CURRENT_ITEM_OFFSET(tensor_iter) \
uint(tensor_iter.current_offset_in_bytes >> tensor_iter.element_shift)
#define CURRENT_ITEM_OFFSET_IN_BYTES(tensor_iter) \
uint(tensor_iter.current_offset_in_bytes)
#define TENSOR_ITERATOR_ADVANCE(tensor_iter, n) \
tensor_iter.current_offset_in_bytes += (int(n) << tensor_iter.element_shift)
#define TENSOR_ITERATOR_ADVANCE_IN_BYTES(tensor_iter, n) \
tensor_iter.current_offset_in_bytes += int(n)
#define SET_TENSOR_ITERATOR_OFFSET_IN_BYTES(tensor_iter, n) \
tensor_iter.current_offset_in_bytes = int(n)
/** Get the offset of a VectorIterator
*
* @param[in] vector_iter The VectorIterator object pointed to the starting position of the buffer
* @param[in] x Relative X position
*
* @return The relative offset of the VectorIterator object (in bytes)
*/
uint vector_offset_in_bytes(VectorIterator vector_iter, int x)
{
return uint(vector_iter.current_offset_in_bytes + x * vector_iter.stride_x);
}
/** Get the offset of an ImageIterator
*
* @param[in] vector_iter The ImageIterator object pointed to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*
* @return The relative offset of the ImageIterator object (in bytes)
*/
uint image_offset_in_bytes(ImageIterator image_iter, int x, int y)
{
return uint(image_iter.current_offset_in_bytes + x * image_iter.stride_x + y * image_iter.stride_y);
}
/** Get the offset of a Tensor3DIterator
*
* @param[in] vector_iter The Tensor3DIterator object pointed to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*
* @return The relative offset of the Tensor3DIterator object (in bytes)
*/
uint tensor3D_offset_in_bytes(Tensor3DIterator tensor_iter, int x, int y, int z)
{
return uint(tensor_iter.current_offset_in_bytes + x * tensor_iter.stride_x + y * tensor_iter.stride_y + z * tensor_iter.stride_z);
}
#define LOAD(tensor_ptr, offset) tensor_ptr[offset]
#define STORE(tensor_ptr, offset, data) tensor_ptr[offset] = data
#define LOAD_CURRENT_ITEM(tensor_ptr, tensor_iter) tensor_ptr[CURRENT_ITEM_OFFSET(tensor_iter)]
#define STORE_CURRENT_ITEM(tensor_ptr, tensor_iter, data) tensor_ptr[CURRENT_ITEM_OFFSET(tensor_iter)] = data
#define VLOAD2(return_type, tensor_ptr, offset) \
return_type(LOAD(tensor_ptr, offset), \
LOAD(tensor_ptr, (offset) + uint(1)))
#define VSTORE2(tensor_ptr, offset, data) \
STORE(tensor_ptr, offset, data[0]); \
STORE(tensor_ptr, (offset) + uint(1), data[1])
#define VLOAD2_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD2(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE2_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE2(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD3(return_type, tensor_ptr, offset) \
return_type(LOAD(tensor_ptr, offset), \
LOAD(tensor_ptr, (offset) + uint(1)), \
LOAD(tensor_ptr, (offset) + uint(2)))
#define VSTORE3(tensor_ptr, offset, data) \
STORE(tensor_ptr, offset, data[0]); \
STORE(tensor_ptr, (offset) + uint(1), data[1]); \
STORE(tensor_ptr, (offset) + uint(2), data[2])
#define VLOAD3_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD3(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE3_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE3(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD4(return_type, tensor_ptr, offset) \
return_type(LOAD(tensor_ptr, offset), \
LOAD(tensor_ptr, (offset) + uint(1)), \
LOAD(tensor_ptr, (offset) + uint(2)), \
LOAD(tensor_ptr, (offset) + uint(3)))
#define VSTORE4(tensor_ptr, offset, data) \
STORE(tensor_ptr, offset, data[0]); \
STORE(tensor_ptr, (offset) + uint(1), data[1]); \
STORE(tensor_ptr, (offset) + uint(2), data[2]); \
STORE(tensor_ptr, (offset) + uint(3), data[3])
#define VLOAD4_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD4(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE4_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE4(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD5(return_type, tensor_ptr, offset) \
return_type(LOAD(tensor_ptr, offset), \
LOAD(tensor_ptr, (offset) + uint(1)), \
LOAD(tensor_ptr, (offset) + uint(2)), \
LOAD(tensor_ptr, (offset) + uint(3)), \
LOAD(tensor_ptr, (offset) + uint(4)))
#define VSTORE5(tensor_ptr, offset, data) \
STORE(tensor_ptr, offset, data[0]); \
STORE(tensor_ptr, (offset) + uint(1), data[1]); \
STORE(tensor_ptr, (offset) + uint(2), data[2]); \
STORE(tensor_ptr, (offset) + uint(3), data[3]); \
STORE(tensor_ptr, (offset) + uint(4), data[4])
#define VLOAD5_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD5(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE5_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE5(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
/** Converting the vec4 object to 4 half-precision (16-bits) floating point values and packing into a uvec2 object
*
* @param[in] data The vec4 object to be packed
*
* @return The packed uvec2 object
*/
highp uvec2 pack4_half(mediump vec4 data)
{
return uvec2(packHalf2x16(data.xy), packHalf2x16(data.zw));
}
/** Unpacking the uvec2 object to 4 half-precision (16-bits) floating point values and converting to a vec4 object
*
* @param[in] packed_data The uvec2 object to be unpacked
*
* @return The unpacked vec4 object
*/
mediump vec4 unpack4_half(highp uvec2 packed_data)
{
return vec4(unpackHalf2x16(packed_data.x), unpackHalf2x16(packed_data.y));
}
/** Unpacking the uvec3 object to 6 half-precision (16-bits) floating point values and converting to a vec2[3] object
*
* @param[in] packed_data The uvec3 object to be unpacked
*
* @return The unpacked vec2[3] object
*/
mediump vec2[3] unpack6_half(highp uvec3 packed_data)
{
return vec2[3](unpackHalf2x16(packed_data[0]),
unpackHalf2x16(packed_data[1]),
unpackHalf2x16(packed_data[2]));
}
/** Converting the vec4[2] object to 8 half-precision (16-bits) floating point values and packing into a uvec4 object
*
* @param[in] data The vec4[2] object to be packed
*
* @return The packed uvec4 object
*/
highp uvec4 pack8_half(mediump vec4 data[2])
{
return uvec4(packHalf2x16(data[0].xy), packHalf2x16(data[0].zw),
packHalf2x16(data[1].xy), packHalf2x16(data[1].zw));
}
/** Unpacking the uvec4 object to 8 half-precision (16-bits) floating point values and converting to a vec4[2] object
*
* @param[in] packed_data The uvec4 object to be unpacked
*
* @return The unpacked vec4[2] object
*/
mediump vec4[2] unpack8_half(highp uvec4 packed_data)
{
return vec4[2](vec4(unpackHalf2x16(packed_data.x), unpackHalf2x16(packed_data.y)),
vec4(unpackHalf2x16(packed_data.z), unpackHalf2x16(packed_data.w)));
}
/** Unpacking the uvec2[3] object to 12 half-precision (16-bits) floating point values and converting to a vec4[3] object
*
* @param[in] packed_data The uvec2[3] object to be unpacked
*
* @return The unpacked vec4[3] object
*/
mediump vec4[3] unpack12_half(highp uvec2[3] packed_data)
{
return vec4[3](vec4(unpackHalf2x16(packed_data[0].x), unpackHalf2x16(packed_data[0].y)),
vec4(unpackHalf2x16(packed_data[1].x), unpackHalf2x16(packed_data[1].y)),
vec4(unpackHalf2x16(packed_data[2].x), unpackHalf2x16(packed_data[2].y)));
}
// For half-precision (16-bits) floating point packed into a "uint" element
#define LOAD_UNPACK2_HALF(tensor_ptr, offset) unpackHalf2x16(uint(LOAD(tensor_ptr, offset)))
#define STORE_PACK2_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, packHalf2x16(data))
#define LOAD_UNPACK2_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK2_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define STORE_PACK2_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK2_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD2_UNPACK4_HALF(tensor_ptr, offset) unpack4_half(VLOAD2(uvec2, tensor_ptr, offset))
#define VSTORE2_PACK4_HALF(tensor_ptr, offset, data) VSTORE2(tensor_ptr, offset, pack4_half(data))
#define VLOAD2_UNPACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD2_UNPACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE2_PACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE2_PACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD3_UNPACK6_HALF(tensor_ptr, offset) unpack6_half(VLOAD3(uvec3, tensor_ptr, offset))
#define VLOAD3_UNPACK6_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD3_UNPACK6_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VLOAD4_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(VLOAD4(uvec4, tensor_ptr, offset))
#define VSTORE4_PACK8_HALF(tensor_ptr, offset, data) VSTORE4(tensor_ptr, offset, pack8_half(data))
#define VLOAD4_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD4_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE4_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE4_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
// For half-precision (16-bits) floating point packed into a "uvec2" element
#define LOAD_UNPACK4_HALF(tensor_ptr, offset) unpack4_half(uvec2(LOAD(tensor_ptr, offset)))
#define STORE_PACK4_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack4_half(data))
#define LOAD_UNPACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define STORE_PACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD2_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(VLOAD2(uvec4, tensor_ptr, offset))
#define VSTORE2_PACK8_HALF(tensor_ptr, offset, data) VSTORE2(tensor_ptr, offset, pack8_half(data))
#define VLOAD2_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD2_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define VSTORE2_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE2_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#define VLOAD3_UNPACK12_HALF(tensor_ptr, offset) unpack12_half(VLOAD3(uvec2[3], tensor_ptr, offset))
#define VLOAD3_UNPACK12_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD3_UNPACK12_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
// For half-precision (16-bits) floating point packed into a "uvec4" element
#define LOAD_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(uvec4(LOAD(tensor_ptr, offset)))
#define STORE_PACK8_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack8_half(data))
#define LOAD_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define STORE_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
/** Converting the uvec4 object to 4 low-precision uint values and packing into a uint object
*
* @param[in] data The uvec4 object to be packed
*
* @return The packed uint object
*/
highp uint pack4_u8(lowp uvec4 data)
{
highp uint r = uint(0);
for(int i = 0; i < 4; i++)
{
r |= data[i] << uint(i * 8);
}
return r;
}
/** Unpacking the uint object to 4 low-precision uint values and converting to a uvec4 object
*
* @param[in] packed_data The uint object to be unpacked
*
* @return The unpacked uvec4 object
*/
lowp uvec4 unpack4_u8(highp uint packed_data)
{
lowp uvec4 uvec;
for(int i = 0; i < 4; i++)
{
uvec[i] = (packed_data >> uint(i * 8)) & uint(0xFF);
}
return uvec;
}
#define LOAD_UNPACK4_U8(tensor_ptr, offset) unpack4_u8(uint(LOAD(tensor_ptr, offset)))
#define STORE_PACK4_U8(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack4_u8(data))
#define LOAD_UNPACK4_CURRENT_ITEM_U8(tensor_ptr, tensor_iter) LOAD_UNPACK4_U8(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter))
#define STORE_PACK4_CURRENT_ITEM_U8(tensor_ptr, tensor_iter, data) STORE_PACK4_U8(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data)
#endif // ARM_COMPUTE_HELPER_CS_H