blob: cbe5136fb1b22e845f0b9b8ee2f481289a478786 [file] [log] [blame]
/*
* Copyright (c) 2018-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEFuseBatchNormalizationKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/common/cpuinfo/CpuIsaInfo.h"
#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/cpu/kernels/fuse_batch_normalization/list.h"
#include <map>
namespace arm_compute
{
namespace
{
struct FuseBatchNormalizeSelectorData
{
DataType dt;
DataLayout dl;
FuseBatchNormalizationType fbn_type;
cpuinfo::CpuIsaInfo isa;
};
using FBNSelectorPtr = std::add_pointer<bool(const FuseBatchNormalizeSelectorData &data)>::type;
using FBNUKernelPtr = std::add_pointer<void(const ITensor *,
const ITensor *,
ITensor *,
ITensor *,
const ITensor *,
const ITensor *,
const ITensor *,
const ITensor *,
float,
const Window &)>::type;
struct FBNUKernel
{
const char *name;
const FBNSelectorPtr is_selected;
FBNUKernelPtr ukernel;
};
static const FBNUKernel available_kernels[] = {
{"fused_batch_normalization_conv_NHWC_F16",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F16 && data.dl == DataLayout::NHWC && data.isa.fp16 &&
data.fbn_type == FuseBatchNormalizationType::CONVOLUTION;
},
REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_conv_f16)},
{"fused_batch_normalization_conv_NCHW_F16",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16 &&
data.fbn_type == FuseBatchNormalizationType::CONVOLUTION;
},
REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_conv_f16)},
{"fused_batch_normalization_dwc_NHWC_F16",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F16 && data.dl == DataLayout::NHWC && data.isa.fp16 &&
data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION;
},
REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nhwc_f16)},
{"fused_batch_normalization_dwc_NCHW_F16",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16 &&
data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION;
},
REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nchw_f16)},
{"fused_batch_normalization_conv_NHWC_F32",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F32 && data.dl == DataLayout::NHWC &&
data.fbn_type == FuseBatchNormalizationType::CONVOLUTION;
},
REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_conv_f32)},
{"fused_batch_normalization_conv_NCHW_F32",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F32 && data.dl == DataLayout::NCHW &&
data.fbn_type == FuseBatchNormalizationType::CONVOLUTION;
},
REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_conv_f32)},
{"fused_batch_normalization_dwc_NHWC_F32",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F32 && data.dl == DataLayout::NHWC &&
data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION;
},
REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nhwc_f32)},
{"fused_batch_normalization_dwc_NCHW_F32",
[](const FuseBatchNormalizeSelectorData &data)
{
return data.dt == DataType::F32 && data.dl == DataLayout::NCHW &&
data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION;
},
REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nchw_f32)}};
/** Micro-kernel selector
*
* @param[in] data Selection data passed to help pick the appropriate micro-kernel
*
* @param[in]
*
* @return A matching micro-kernel else nullptr
*/
const FBNUKernel *get_implementation(const FuseBatchNormalizeSelectorData &data)
{
for (const auto &uk : available_kernels)
{
if (uk.is_selected(data))
{
return &uk;
}
}
return nullptr;
}
Status validate_arguments(const ITensorInfo *input_weights,
const ITensorInfo *bn_mean,
const ITensorInfo *bn_var,
const ITensorInfo *fused_weights,
const ITensorInfo *fused_bias,
const ITensorInfo *input_bias,
const ITensorInfo *bn_beta,
const ITensorInfo *bn_gamma,
float epsilon,
FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_UNUSED(epsilon);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input_weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_weights, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON(input_bias == nullptr && fused_bias == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(bn_mean->num_dimensions() > 1);
if (fbn_type == FuseBatchNormalizationType::CONVOLUTION)
{
ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(3) != bn_mean->dimension(0));
}
else
{
const size_t channel_idx =
get_data_layout_dimension_index(input_weights->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(channel_idx) != bn_mean->dimension(0));
}
// Validate bias
if (input_bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, input_bias);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, input_bias);
}
// Validate beta
if (bn_beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_beta);
}
// Validate gamma
if (bn_gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_gamma);
}
// Validate output weights
if (fused_weights != nullptr && fused_weights->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_weights, fused_weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input_weights, fused_weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_weights);
}
// Validate output bias
if (fused_bias != nullptr && fused_bias->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_bias);
}
return Status{};
}
} // namespace
NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel()
: _input_weights(nullptr),
_input_bias(nullptr),
_bn_mean(nullptr),
_bn_var(nullptr),
_bn_gamma(nullptr),
_bn_beta(nullptr),
_fused_weights(nullptr),
_fused_bias(nullptr),
_epsilon(),
_run_in_place_weights(false),
_run_in_place_bias(false),
_func(nullptr)
{
}
void NEFuseBatchNormalizationKernel::configure(const ITensor *input_weights,
const ITensor *bn_mean,
const ITensor *bn_var,
ITensor *fused_weights,
ITensor *fused_bias,
const ITensor *input_bias,
const ITensor *bn_beta,
const ITensor *bn_gamma,
float epsilon,
FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var);
_input_weights = input_weights;
_input_bias = input_bias;
_bn_mean = bn_mean;
_bn_var = bn_var;
_bn_beta = bn_beta;
_bn_gamma = bn_gamma;
_fused_weights = fused_weights;
_fused_bias = fused_bias;
_epsilon = epsilon;
_run_in_place_weights = (fused_weights == nullptr) || (fused_weights == input_weights);
_run_in_place_bias = (fused_bias == nullptr) || (input_bias != nullptr && fused_bias == input_bias);
// Auto initialize outputs
if (_fused_weights != nullptr)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*_fused_weights->info(), *_input_weights->info()->clone());
}
if (_fused_bias != nullptr)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone());
}
// Validate arguments
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(
input_weights->info(), bn_mean->info(), bn_var->info(),
(fused_weights != nullptr) ? fused_weights->info() : nullptr,
(fused_bias != nullptr) ? fused_bias->info() : nullptr, (input_bias != nullptr) ? input_bias->info() : nullptr,
(bn_beta != nullptr) ? bn_beta->info() : nullptr, (bn_gamma != nullptr) ? bn_gamma->info() : nullptr, epsilon,
fbn_type));
const auto *uk = get_implementation(FuseBatchNormalizeSelectorData{
input_weights->info()->data_type(), input_weights->info()->data_layout(), fbn_type, CPUInfo::get().get_isa()});
ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
ARM_COMPUTE_ERROR_ON(uk->ukernel == nullptr);
_func = uk->ukernel;
// Configure kernel window
Window win = calculate_max_window(*input_weights->info());
INEKernel::configure(win);
}
Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *input_weights,
const ITensorInfo *bn_mean,
const ITensorInfo *bn_var,
const ITensorInfo *fused_weights,
const ITensorInfo *fused_bias,
const ITensorInfo *input_bias,
const ITensorInfo *bn_beta,
const ITensorInfo *bn_gamma,
float epsilon,
FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_weights, bn_mean, bn_var, fused_weights, fused_bias,
input_bias, bn_beta, bn_gamma, epsilon, fbn_type));
return Status{};
}
void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(_input_weights, _input_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon,
window);
}
} // namespace arm_compute