blob: f70fc98572b98a758a818fc012b3754bd5cf109f [file] [log] [blame]
/*
* Copyright (c) 2017-2022, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include <stdio.h>
#include "arm_gemm.hpp"
#include "bias_adder.hpp"
#include "mergeresults.hpp"
#include "transform.hpp"
#ifdef CYCLE_PROFILING
#include "profiler.hpp"
#endif
namespace arm_gemm {
namespace {
template<typename OutputStage>
class run_gemv_kernel {
public:
template<typename strategy, typename Tlo, typename Tro, typename Tr>
static void run (
const strategy &strat,
const Tlo *A_ptr, const Tro *B_ptr, Tr *c_ptr,
size_t N, size_t K,
const Tr *bias, const Activation &act, bool Accumulate,
const OutputStage &os, const int32_t *col_bias, unsigned int col_base
);
};
template<>
template<typename strategy, typename Tlo, typename Tro, typename Tr>
void run_gemv_kernel<Nothing>::run(
const strategy &strat,
const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
size_t N, size_t K,
const Tr *bias, const Activation &act, bool Accumulate,
const Nothing &, const int32_t *, unsigned int
) {
strat.kernel(A_ptr, B_ptr, C_ptr, N, K, bias, act, Accumulate);
}
template<>
template<typename strategy, typename Tlo, typename Tro, typename Tr>
void run_gemv_kernel<Requantize32>::run(
const strategy &strat,
const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
size_t N, size_t K,
const Tr *, const Activation &, bool,
const Requantize32 &qp, const int32_t *col_bias, unsigned int col_base
) {
strat.kernel(A_ptr, B_ptr, C_ptr, N, K, &qp, col_bias + col_base, col_base);
}
} // anonymous namespace
// Implementation of the GemmCommon abstract class.
//
// This is implementation is for GEMV with pretransposition.
//
// batches are not supported as a batched GEMV makes no sense (can be converted to a GEMM).
template<typename strategy, typename To, typename Tr, typename OutputStage=Nothing>
class GemvPretransposed : public GemmCommon<To, Tr> {
typedef typename strategy::operand_type Toi;
typedef typename strategy::result_type Tri;
const GemmArgs _args;
const unsigned int _buffer_per_multi;
unsigned int k_block=0;
unsigned int n_block=0;
const Toi *_B_pretransposed = nullptr;
OutputStage _os;
// Pointer to the column sums (for quantized cases)
int32_t *col_bias = nullptr;
// Get size of the column sums
unsigned int get_col_sum_size() const {
if(std::is_same<OutputStage, Requantize32>::value) {
return _args._Nsize * _args._nmulti * sizeof(int32_t);
} else {
return 0;
}
}
public:
GemvPretransposed(GemvPretransposed &) = delete;
GemvPretransposed & operator= (GemvPretransposed &) = delete;
GemvPretransposed(const GemmArgs &args, const OutputStage &os = {})
: _args(args),
_buffer_per_multi(roundup(args._Ksize, strategy::k_unroll()) * roundup(args._Nsize, strategy::out_width())),
_os(os) {
/* For now don't do any blocking. TODO: figure out if we should. */
if (strategy::supports_accumulate() && args._cfg && args._cfg->inner_block_size) {
k_block = args._cfg->inner_block_size;
} else {
k_block = args._Ksize;
}
if (args._cfg && args._cfg->outer_block_size) {
n_block = args._cfg->outer_block_size;
} else {
n_block = args._Nsize;
}
}
// Window is number of out_width blocks, times number of multis.
ndrange_t get_window_size() const override {
return { iceildiv(_args._Nsize, strategy::out_width()) * _args._nmulti };
}
// Actually execute the GEMV.
void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override {
#ifdef CYCLE_PROFILING
profiler prof;
#endif
strategy strat(_args._ci);
const auto start = work_range.get_position(0);
const auto end = work_range.get_position_end(0);
/* Break the window values down into multis of interest... */
const unsigned int window_per_multi = iceildiv(_args._Nsize, strategy::out_width());
const unsigned int multi_0 = start / window_per_multi;
const unsigned int multi_end = end / window_per_multi;
/* ... and figure out where we start and end in the first and last multi. */
const unsigned int n_0 = (start - (multi_0 * window_per_multi)) * strategy::out_width();
const unsigned int n_max = (end - (multi_end * window_per_multi)) * strategy::out_width();
static_assert(std::is_same<Tr, Tri>::value, "GemvPretransposed: Result types must be the same.");
for (unsigned int multi=multi_0; multi<=multi_end; multi++) {
const unsigned int n_start = (multi==multi_0) ? n_0 : 0;
const unsigned int n_end = (multi==multi_end) ? n_max : _args._Nsize;
if (n_end <= n_start)
continue;
for (unsigned int k0=0; k0<_args._Ksize; k0+=k_block) {
unsigned int kmax = std::min(k0 + k_block, _args._Ksize);
for (unsigned int n=n_start; n<n_end; n+=n_block) {
unsigned int nmax = std::min(n + n_block, n_end);
#ifdef CYCLE_PROFILING
auto p = prof.ScopedProfiler(PROFILE_KERNEL, (kmax-k0) * (nmax-n));
#endif
run_gemv_kernel<OutputStage>::run(strat, this->_Aptr + (multi * this->_A_multi_stride) + k0,
_B_pretransposed + (multi * _buffer_per_multi) + (n * roundup(_args._Ksize, strategy::k_unroll())) + (k0 * strategy::out_width()),
this->_Cptr + (multi * this->_C_multi_stride) + n,
(nmax - n), (kmax-k0),
this->_bias ? this->_bias + (multi * this->_bias_multi_stride) + n : nullptr,
_args._act, (k0 != 0),
_os, col_bias, n + (_args._Nsize * multi));
}
}
}
}
/* Pretransposed interface implementation */
bool B_is_pretransposed() const override {
return true;
}
bool B_pretranspose_required() const override {
/* Transpose is required if _B_pretransposed is still nullptr */
return (_B_pretransposed == nullptr);
}
size_t get_B_pretransposed_array_size() const override {
return _buffer_per_multi * _args._nmulti * sizeof(To) + get_col_sum_size();
}
void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
// Column sums go on the front of the pretransposed buffer in requantized cases.
// We could optimize here in case we don't actually need to sum the columns, but this code is only run on setup.
if (std::is_same<OutputStage, Requantize32>::value) {
col_bias = reinterpret_cast<int32_t *>(in_buffer);
Requantize32 *qp_ptr = reinterpret_cast<Requantize32 *>(&_os);
for (unsigned int i=0; i<_args._nmulti; i++) {
compute_col_sums(*qp_ptr, _args._Nsize, _args._Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _args._Nsize), _args._Ksize, i, 0);
}
}
}
void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride, bool transposed) override {
assert(!transposed);
requantize_bias(buffer, B, ldb, B_multi_stride);
// The actual transposed buffer goes after the column sums (if any)
uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer);
Toi *B_buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
strategy strat(_args._ci);
for (unsigned int multi=0; multi<_args._nmulti; multi++) {
strat.transforms.PrepareB(B_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _args._Nsize, 0, _args._Ksize, false);
}
_B_pretransposed = B_buffer;
}
void set_pretransposed_B_data(void *buffer) override {
_B_pretransposed = reinterpret_cast<Toi *>(buffer);
}
GemmConfig get_config() override {
GemmConfig c;
c.method = GemmMethod::GEMV_PRETRANSPOSED;
c.inner_block_size = k_block;
c.outer_block_size = n_block;
c.filter = get_type_name<strategy>();
return c;
}
};
} // namespace arm_gemm