blob: 0a34ee6a07825b6fb86f4bd7ddd7981e79616a45 [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEDepthwiseConvolutionLayerNativeKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp"
#include "src/core/NEON/wrapper/traits.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
namespace
{
constexpr auto data_layout = DataLayout::NHWC;
const size_t batch_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const size_t width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const size_t height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const size_t channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
constexpr auto dim_manual_loop = Window::Dimension(0, 0, 0);
constexpr auto dim_single_unit_step = Window::Dimension(0, 1, 1);
constexpr size_t vector_size = 8;
struct DepthwiseConvolutionRunInfo
{
public:
const size_t num_read_elements_per_iteration;
const uint32_t x_start;
const uint32_t x_end;
const uint32_t x_step;
const uint32_t x_leftover_start;
const size_t input_stride_y;
const size_t input_stride_z;
const size_t input_max_offset;
const size_t weights_width;
const size_t weights_height;
const size_t weights_stride_y;
const size_t weights_stride_z;
const size_t conv_stride_x;
const size_t conv_stride_y;
const size_t conv_pad_left;
const size_t conv_pad_top;
const size_t input_height;
const size_t input_width;
const size_t input_depth;
DepthwiseConvolutionRunInfo(const ITensorInfo &input, const ITensorInfo &weights, const PadStrideInfo &conv_info, const Window &w, uint32_t depth_multiplier = 1)
: num_read_elements_per_iteration((depth_multiplier == 1 ? (vector_size / element_size_from_data_type(input.data_type())) : 1)),
x_start(w.x().start()),
x_end(w.x().end()),
x_step(static_cast<uint32_t>(num_read_elements_per_iteration * depth_multiplier)),
x_leftover_start(std::max(static_cast<int32_t>(w.x().end()) - static_cast<int32_t>(x_step) + 1, int32_t(0))),
input_stride_y(input.strides_in_bytes().y()),
input_stride_z(input.strides_in_bytes().z()),
input_max_offset(input.strides_in_bytes().z() * input.dimension(height_idx) - (input.padding().bottom + input.padding().top) * input.strides_in_bytes().y()),
weights_width(weights.dimension(width_idx)),
weights_height(weights.dimension(height_idx)),
weights_stride_y(weights.strides_in_bytes().y()),
weights_stride_z(weights.strides_in_bytes().z()),
conv_stride_x(conv_info.stride().first),
conv_stride_y(conv_info.stride().second),
conv_pad_left(conv_info.pad_left()),
conv_pad_top(conv_info.pad_top()),
input_height(input.dimension(height_idx)),
input_width(input.dimension(width_idx)),
input_depth(input.dimension(channel_idx))
{
}
};
inline bool is_valid_input_region(int32_t base_w, uint32_t base_h, uint32_t w, uint32_t h, const DepthwiseConvolutionRunInfo &run_info, const Size2D &dilation)
{
const int32_t current_h = base_h + h * dilation.y();
const bool is_valid_h = current_h >= 0 && current_h < static_cast<int32_t>(run_info.input_height);
const int32_t current_w = base_w + w * dilation.x();
const bool is_valid_w = current_w >= 0 && current_w < static_cast<int32_t>(run_info.input_width);
return is_valid_h && is_valid_w;
}
template <typename T>
void depthwise_loop_multiplier1_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const Size2D &dilation, const Window &window, bool has_biases)
{
constexpr auto element_per_vector = vector_size / sizeof(T);
using VectorType = typename wrapper::traits::neon_vector<T, element_per_vector>::type;
using TagType = typename wrapper::traits::neon_vector<T, element_per_vector>::tag_type;
const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window);
const VectorType zero_vector = wrapper::vdup_n(static_cast<T>(0), TagType{});
Window execution_window = window;
execution_window.set(Window::DimX, dim_single_unit_step);
Window win_input = window;
win_input.set(Window::DimX, dim_manual_loop);
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = win_input;
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set(Window::DimX, dim_manual_loop);
Iterator input_it(input, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(output, win_output);
Iterator biases_it{};
if(has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(execution_window, [&](const Coordinates & id)
{
const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto const base_weights_ptr = weights_it.ptr();
uint32_t x = run_info.x_start;
for(; x < run_info.x_leftover_start; x += run_info.x_step)
{
VectorType acc = zero_vector;
auto weights_ptr = base_weights_ptr;
int64_t input_offset = base_input_offset;
for(uint32_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for(uint32_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_vals = is_valid_region ?
wrapper::vload(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) :
zero_vector;
const auto weights_vals = wrapper::vload(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
acc = wrapper::vmla(acc, weights_vals, input_vals);
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if(has_biases)
{
const auto biases_vals = wrapper::vload(reinterpret_cast<T *>(biases_it.ptr()) + x);
acc = wrapper::vadd(acc, biases_vals);
}
wrapper::vstore(reinterpret_cast<T *>(output_it.ptr()) + x, acc);
}
for(; x < run_info.x_end; ++x)
{
auto acc_scalar = T{ 0 };
auto weights_ptr = base_weights_ptr;
int64_t input_offset = base_input_offset;
for(size_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for(size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_vals = is_valid_region ? *reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset)) : 0;
const auto weights_vals = *(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
acc_scalar += (input_vals * weights_vals);
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if(has_biases)
{
const auto biases_vals = *(reinterpret_cast<T *>(biases_it.ptr()) + x);
acc_scalar += biases_vals;
}
*(reinterpret_cast<T *>(output_it.ptr()) + x) = acc_scalar;
}
},
input_it, weights_it, biases_it, output_it);
}
template <typename T>
void depthwise_loop_generic_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const Size2D &dilation, unsigned int depth_multiplier, const Window &window, bool has_biases)
{
const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window, depth_multiplier);
Window execution_window = window;
execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
Window win_input = execution_window;
win_input.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = window;
win_weights.set_dimension_step(Window::DimX, run_info.x_step);
win_weights.set(Window::DimY, dim_manual_loop);
win_weights.set(Window::DimZ, dim_manual_loop);
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set_dimension_step(Window::DimX, run_info.x_step);
Iterator input_it(input, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(output, win_output);
Iterator biases_it{};
if(has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(execution_window, [&](const Coordinates & id)
{
std::vector<T> acc(depth_multiplier, static_cast<T>(0));
const int input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
int input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto weights_ptr = weights_it.ptr();
for(size_t h = 0; h < run_info.weights_height; ++h)
{
int offs = input_offset;
for(size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_val = is_valid_region ? *(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) : T(0);
for(size_t m = 0; m < depth_multiplier; ++m)
{
const auto weights_val = *(reinterpret_cast<T *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
acc.at(m) = support::cpp11::fma(weights_val, input_val, acc.at(m));
}
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if(has_biases)
{
for(size_t m = 0; m < depth_multiplier; ++m)
{
const auto biases_val = *(reinterpret_cast<T *>(biases_it.ptr() + m * sizeof(T)));
*(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m) + biases_val;
}
}
else
{
for(size_t m = 0; m < depth_multiplier; ++m)
{
*(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m);
}
}
},
input_it, weights_it, biases_it, output_it);
}
template <typename T, typename TW>
void depthwise_loop_multiplier1_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const Size2D &dilation, std::vector<int> output_multiplier, std::vector<int> output_shift, const Window &window, bool has_biases)
{
constexpr auto element_per_vector = vector_size / sizeof(T);
using VectorType = typename wrapper::traits::neon_vector<T, element_per_vector>::type;
using TagType = typename wrapper::traits::neon_vector<T, element_per_vector>::tag_type;
using AccType = int32_t;
using AccArrayType = std::array<AccType, element_per_vector>;
const auto out_of_bound_value = PixelValue(static_cast<uint64_t>(0), input->info()->data_type(), input->info()->quantization_info()).get<T>();
const auto out_of_bound_vector = wrapper::vdup_n(static_cast<T>(out_of_bound_value), TagType{});
const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window);
const int32_t input_qoffset = input->info()->quantization_info().uniform().offset;
const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset;
const int32_t output_qoffset = output->info()->quantization_info().uniform().offset;
const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset;
Window execution_window = window;
execution_window.set(Window::DimX, dim_single_unit_step);
Window win_input = window;
win_input.set(Window::DimX, dim_manual_loop);
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = win_input;
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set(Window::DimX, dim_manual_loop);
Iterator input_it(input, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(output, win_output);
Iterator biases_it{};
if(has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(execution_window, [&](const Coordinates & id)
{
const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto const base_weights_ptr = weights_it.ptr();
size_t x = run_info.x_start;
for(; x < run_info.x_leftover_start; x += run_info.x_step)
{
AccArrayType acc{};
AccArrayType in_sum{};
AccArrayType we_sum{};
auto weights_ptr = base_weights_ptr;
auto input_offset = base_input_offset;
for(size_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for(size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_vals = is_valid_region ?
wrapper::vload(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) :
out_of_bound_vector;
const auto weights_vals = wrapper::vload(reinterpret_cast<TW *>(weights_ptr + w * run_info.weights_stride_y) + x);
for(size_t i = 0; i < run_info.x_step; ++i)
{
acc.at(i) += input_vals[i] * weights_vals[i];
in_sum.at(i) += input_vals[i];
we_sum.at(i) += weights_vals[i];
}
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
VectorType out_vals = wrapper::vdup_n(static_cast<T>(0), TagType{});
for(size_t i = 0; i < run_info.x_step; ++i)
{
acc.at(i) -= in_sum.at(i) * weights_qoffset;
acc.at(i) -= we_sum.at(i) * input_qoffset;
acc.at(i) += k_offset;
if(has_biases)
{
acc.at(i) += *(reinterpret_cast<int32_t *>(biases_it.ptr() + i * sizeof(int32_t)) + x);
}
const int32_t out_mul = output_multiplier.at(x + i);
const int32_t out_shift = output_shift.at(x + i);
if(out_shift < 0)
{
acc.at(i) = saturating_doubling_high_mul(acc.at(i) * (1 << (-out_shift)), out_mul) + output_qoffset;
}
else
{
acc.at(i) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(i), out_mul), out_shift) + output_qoffset;
}
out_vals[i] = static_cast<T>(utility::clamp<AccType, T>(acc.at(i)));
}
wrapper::vstore(reinterpret_cast<T *>(output_it.ptr()) + x, out_vals);
}
// left-over
for(; x < run_info.x_end; ++x)
{
AccType acc = 0;
AccType in_sum = 0;
AccType we_sum = 0;
auto weights_ptr = base_weights_ptr;
auto input_offset = base_input_offset;
for(size_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for(size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_val = is_valid_region ?
*reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset)) :
out_of_bound_value;
const auto weights_val = *(reinterpret_cast<TW *>(weights_ptr + w * run_info.weights_stride_y) + x);
acc += input_val * weights_val;
in_sum += input_val;
we_sum += weights_val;
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
T out_vals{ 0 };
acc -= in_sum * weights_qoffset;
acc -= we_sum * input_qoffset;
acc += k_offset;
if(has_biases)
{
acc += *(reinterpret_cast<int32_t *>(biases_it.ptr()) + x);
}
const int32_t out_mul = output_multiplier.at(x);
const int32_t out_shift = output_shift.at(x);
if(out_shift < 0)
{
acc = saturating_doubling_high_mul(acc * (1 << (-out_shift)), out_mul) + output_qoffset;
}
else
{
acc = rounding_divide_by_exp2(saturating_doubling_high_mul(acc, out_mul), out_shift) + output_qoffset;
}
out_vals = static_cast<T>(utility::clamp<AccType, T>(acc));
*(reinterpret_cast<T *>(output_it.ptr()) + x) = out_vals;
}
},
input_it, weights_it, biases_it, output_it);
}
template <typename T, typename TW>
void depthwise_loop_generic_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const Size2D &dilation, unsigned int depth_multiplier, std::vector<int> output_multiplier, std::vector<int> output_shift, const Window &window, bool has_biases)
{
using AccType = int32_t;
const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window, depth_multiplier);
const auto out_of_bound_value = PixelValue(static_cast<uint64_t>(0), input->info()->data_type(), input->info()->quantization_info()).get<T>();
const int32_t input_qoffset = input->info()->quantization_info().uniform().offset;
const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset;
const int32_t output_qoffset = output->info()->quantization_info().uniform().offset;
const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset;
Window execution_window = window;
execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
Window win_input = execution_window;
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = window;
win_weights.set_dimension_step(Window::DimX, run_info.x_step);
win_weights.set(Window::DimY, dim_manual_loop);
win_weights.set(Window::DimZ, dim_manual_loop);
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set_dimension_step(Window::DimX, run_info.x_step);
Iterator input_it(input, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(output, win_output);
Iterator biases_it{};
if(has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(execution_window, [&](const Coordinates & id)
{
std::vector<AccType> acc(depth_multiplier, 0);
std::vector<AccType> we_sum(depth_multiplier, 0);
AccType in_sum = 0;
const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
int64_t input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto weights_ptr = weights_it.ptr();
for(size_t h = 0; h < run_info.weights_height; ++h)
{
int offs = input_offset;
for(size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_val = is_valid_region ? *(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) : out_of_bound_value;
for(size_t m = 0; m < depth_multiplier; ++m)
{
const auto weights_val = *(reinterpret_cast<TW *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
acc.at(m) += input_val * weights_val;
we_sum.at(m) += weights_val;
}
offs += dilation.x() * run_info.input_stride_y;
in_sum += input_val;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
for(size_t m = 0; m < depth_multiplier; ++m)
{
acc.at(m) -= in_sum * weights_qoffset;
acc.at(m) -= we_sum.at(m) * input_qoffset;
acc.at(m) += k_offset;
if(has_biases)
{
acc.at(m) += *(reinterpret_cast<int32_t *>(biases_it.ptr() + m * sizeof(int32_t)));
}
const int32_t out_mul = output_multiplier.at(id.x() * depth_multiplier + m);
const int32_t out_shift = output_shift.at(id.x() * depth_multiplier + m);
if(out_shift < 0)
{
acc.at(m) = saturating_doubling_high_mul(acc.at(m) * (1 << (-out_shift)), out_mul) + output_qoffset;
}
else
{
acc.at(m) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(m), out_mul), out_shift) + output_qoffset;
}
*(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = static_cast<T>(utility::clamp<AccType, T>(acc.at(m)));
}
},
input_it, weights_it, biases_it, output_it);
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier == 0);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) + (weights->dimension(1) - 1) * (dilation.x() - 1) > input->dimension(1) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) + (weights->dimension(2) - 1) * (dilation.y() - 1) > input->dimension(2) + conv_info.pad_top() + conv_info.pad_bottom());
ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(0) * depth_multiplier) != weights->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
ARM_COMPUTE_RETURN_ERROR_ON((conv_info.stride().first < 1) || (conv_info.stride().second < 1));
if(is_data_type_quantized_per_channel(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size());
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
}
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(0));
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
}
}
if(output->total_size() != 0)
{
const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
} // namespace
NEDepthwiseConvolutionLayerNativeKernel::NEDepthwiseConvolutionLayerNativeKernel()
: _func(), _input(), _weights(), _biases(), _output(), _conv_info(), _depth_multiplier(1), _dilation(), _output_multiplier(), _output_shift(), _has_biases()
{
}
void NEDepthwiseConvolutionLayerNativeKernel::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, dilation));
_input = input;
_weights = weights;
_biases = biases;
_output = output;
_conv_info = conv_info;
_depth_multiplier = depth_multiplier;
_dilation = dilation;
_has_biases = (biases != nullptr);
if(is_data_type_quantized(_input->info()->data_type()))
{
const auto input_scale = input->info()->quantization_info().uniform().scale;
const auto output_scale = output->info()->quantization_info().uniform().scale;
auto weights_scale = weights->info()->quantization_info().scale();
if(!is_data_type_quantized_per_channel(_weights->info()->data_type()))
{
for(size_t i = 1; i < _weights->info()->dimension(channel_idx); ++i)
{
weights_scale.push_back(weights_scale.front());
}
}
for(const auto &s : weights_scale)
{
int32_t out_mult = 0;
int32_t out_shift = 0;
const float multiplier = input_scale * s / output_scale;
arm_compute::quantization::calculate_quantized_multiplier(multiplier, &out_mult, &out_shift);
_output_multiplier.push_back(out_mult);
_output_shift.push_back(out_shift);
}
}
switch(_weights->info()->data_type())
{
case DataType::QASYMM8:
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<uint8_t, uint8_t>;
break;
case DataType::QASYMM8_SIGNED:
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<int8_t, int8_t>;
break;
case DataType::QSYMM8_PER_CHANNEL:
if(_input->info()->data_type() == DataType::QASYMM8)
{
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<uint8_t, int8_t>;
}
else
{
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<int8_t, int8_t>;
}
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<float16_t, float16_t>;
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise<float, float>;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation);
auto_init_if_empty(*output->info(), input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->info()->quantization_info()));
Window win = calculate_max_window(*output->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
INEKernel::configure(win);
}
Status NEDepthwiseConvolutionLayerNativeKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, dilation));
return Status{};
}
void NEDepthwiseConvolutionLayerNativeKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window, _has_biases);
}
template <typename T, typename TW, NEDepthwiseConvolutionLayerNativeKernel::FloatEnalber<T>>
void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
if(_depth_multiplier == 1)
{
depthwise_loop_multiplier1_fp<T>(_input, _weights, _biases, _output, _conv_info, _dilation, window, has_biases);
}
else
{
depthwise_loop_generic_fp<T>(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, window, has_biases);
}
}
template <typename T, typename TW, NEDepthwiseConvolutionLayerNativeKernel::Quantized8bitEnalber<T>>
void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
if(_depth_multiplier == 1)
{
depthwise_loop_multiplier1_quantized<T, TW>(_input, _weights, _biases, _output, _conv_info, _dilation, _output_multiplier, _output_shift, window, has_biases);
}
else
{
depthwise_loop_generic_quantized<T, TW>(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases);
}
}
} // namespace arm_compute