blob: a75ab6b609e478bc1ea8f4d5592565169b32ccbe [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
#include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
#include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <set>
#include <string>
using namespace arm_compute;
GCGEMMMatrixMultiplyKernel::GCGEMMMatrixMultiplyKernel()
: _input0(nullptr), _input1(nullptr), _output(nullptr)
{
}
void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTensor *input1, IGCTensor *output, float alpha, bool is_interleaved_transposed)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1, output);
if(!is_interleaved_transposed)
{
ARM_COMPUTE_ERROR_ON(input0->info()->dimension(0) != input1->info()->dimension(1));
}
_input0 = input0;
_input1 = input1;
_output = output;
std::set<std::string> build_opts;
Window win;
build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
build_opts.emplace("#define COLS_A " + support::cpp11::to_string(input0->info()->dimension(0)));
build_opts.emplace("#define COLS_B " + support::cpp11::to_string(input1->info()->dimension(0)));
build_opts.emplace("#define ALPHA " + float_to_string_with_full_precision(alpha));
// Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
if(is_interleaved_transposed)
{
switch(input0->info()->data_type())
{
case DataType::F16:
build_opts.emplace("#define DATA_TYPE_FP16");
break;
case DataType::F32:
build_opts.emplace("#define DATA_TYPE_FP32");
break;
default:
ARM_COMPUTE_ERROR("Current data type is not supported");
break;
}
build_opts.emplace("#define GEMM_MM_INTERLEAVED_TRANSPOSED");
// Create kernel
_kernel = GCKernelLibrary::get().create_kernel(("gemm_mm_interleaved_transposed"), build_opts);
// Configure window kernel
const unsigned int num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(input0->info()->data_type());
constexpr unsigned int num_elems_processed_per_iteration_y = 4;
win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowRectangle input0_access(input0->info(), 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
AccessWindowTranspose input1_access(input1->info(), 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
AccessWindowRectangle output_access(output->info(), 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
update_window_and_padding(win, input0_access, input1_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->info()->tensor_shape()));
}
else
{
ARM_COMPUTE_ERROR_ON(input0->info()->dimension(0) != input1->info()->dimension(1));
// Special case for 1xN, 2xN, 3xN and 4xN input0 tensor
unsigned int num_elems_processed_per_iteration_x;
unsigned int num_elems_processed_per_iteration_y;
switch(input0->info()->data_type())
{
case DataType::F16:
num_elems_processed_per_iteration_x = 4;
num_elems_processed_per_iteration_y = 1;
build_opts.emplace("#define DATA_TYPE_FP16");
break;
case DataType::F32:
num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(input0->info()->data_type());
num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->info()->dimension(1)), 4);
build_opts.emplace("#define DATA_TYPE_FP32");
break;
default:
ARM_COMPUTE_ERROR("Current data type is not supported");
break;
}
build_opts.emplace("#define GEMM_MM_FLOATING_POINT");
build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_X " + support::cpp11::to_string(num_elems_processed_per_iteration_x));
build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_Y " + support::cpp11::to_string(num_elems_processed_per_iteration_y));
// Create kernel
_kernel = GCKernelLibrary::get().create_kernel("gemm_mm_floating_point", build_opts);
win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input0_access(input0->info(), 0, 0, ceil_to_multiple(input0->info()->dimension(0), num_elems_processed_per_iteration_x), ceil_to_multiple(input0->info()->dimension(1),
num_elems_processed_per_iteration_y));
AccessWindowStatic input1_access(input1->info(), 0, 0, ceil_to_multiple(input1->info()->dimension(0), num_elems_processed_per_iteration_x), input1->info()->dimension(1));
AccessWindowRectangle output_access(output->info(), 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
update_window_and_padding(win, input0_access, input1_access, output_access);
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output_access.set_valid_region(win, ValidRegion(coord, output->info()->tensor_shape()));
}
IGCKernel::configure(win);
}
void GCGEMMMatrixMultiplyKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IGCKernel::window(), window);
_kernel.use();
Window slice = window.first_slice_window_2D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if(_input1->info()->num_dimensions() < 3)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
switch(_input0->info()->data_type())
{
case DataType::F16:
add_2D_tensor_argument(idx, _input0, BufferParam(1, 2), slice);
add_2D_tensor_argument(idx, _input1, BufferParam(2, 3), slice_b);
add_2D_tensor_argument(idx, _output, BufferParam(3, 3), slice);
break;
case DataType::F32:
add_2D_tensor_argument(idx, _input0, BufferParam(1, 2), slice);
add_2D_tensor_argument(idx, _input1, BufferParam(2, 2), slice_b);
add_2D_tensor_argument(idx, _output, BufferParam(3, 2), slice);
break;
default:
ARM_COMPUTE_ERROR("Current data type is not supported");
break;
}
_kernel.update_shader_params();
enqueue(*this, slice);
}
while(window.slide_window_slice_2D(slice));
}