blob: 6d77c614f7a881d60feb8f40a8e1a9580124c258 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuFullyConnected.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/kernels/CpuTransposeKernel.h"
#include "src/cpu/operators/CpuConvertFullyConnectedWeights.h"
#include "src/cpu/operators/CpuFlatten.h"
#include "src/cpu/operators/CpuGemm.h"
#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"
namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::experimental;
using namespace arm_compute::misc::shape_calculator;
namespace
{
// Get min, max bound of a quantized asymmetric dst tensor, with the effect of fused activation
std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
{
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
const UniformQuantizationInfo q_unif = q_info.uniform();
if(act_info.enabled())
{
switch(act_info.activation())
{
case ActivationLayerInfo::ActivationFunction::RELU:
type_min = PixelValue(q_unif.offset);
break;
case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
type_min = PixelValue(q_unif.offset);
type_max = PixelValue(act_info.a(), data_type, q_info);
break;
case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
type_min = PixelValue(act_info.b(), data_type, q_info);
type_max = PixelValue(act_info.a(), data_type, q_info);
break;
default:
ARM_COMPUTE_ERROR("Activation function not supported.");
break;
}
}
return std::make_pair(type_min, type_max);
}
Status get_gemmlowp_output_stage_info(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const ActivationLayerInfo &act,
GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
{
const auto data_type = src->data_type();
const QuantizationInfo oq_info = dst->quantization_info();
const UniformQuantizationInfo iq_unif = src->quantization_info().uniform();
const UniformQuantizationInfo wq_unif = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_unif = oq_info.uniform();
float multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
int32_t output_multiplier;
int32_t output_shift;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
gemmlowp_output_stage_info.gemmlowp_shift = output_shift;
gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
gemmlowp_output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage_info.gemmlowp_min_bound = type_min.get<int32_t>();
gemmlowp_output_stage_info.gemmlowp_max_bound = type_max.get<int32_t>();
return Status{};
}
Status validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ActivationLayerInfo &act, bool enable_fast_math)
{
if(is_data_type_quantized_asymmetric(src->data_type()))
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate src and weights offset
const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(src, weights, dst, act, gemmlowp_output_stage_info));
GEMMInfo gemm_info;
gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
gemm_info.set_fast_math(enable_fast_math);
// Validate gemmlowp function
TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
ARM_COMPUTE_RETURN_ON_ERROR(CpuGemmLowpMatrixMultiplyCore::validate(&src_info,
&weights_info,
biases,
dst,
gemm_info));
}
else
{
GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
gemm_info.set_fast_math(enable_fast_math);
ARM_COMPUTE_RETURN_ON_ERROR(CpuGemm::validate(src, weights, biases, dst, 1.f, 1.0f, gemm_info));
}
return Status{};
}
} // namespace
CpuFullyConnected::CpuFullyConnected()
: _flatten(nullptr),
_convert_weights(nullptr),
_transpose_weights(nullptr),
_mm_gemm(nullptr),
_mm_gemmlowp(nullptr),
_flattened_src(),
_converted_weights(),
_reshaped_weights(),
_trans_weights(),
_trans_weights_idx(AuxTensorIdx::Count),
_aux_mem(Count),
_needs_weights_conversion(false),
_needs_weights_reshape(false),
_is_fc_after_conv(false),
_is_quantized_asymmetric(false),
_is_prepared(false),
_enable_fast_math(false)
{
}
CpuFullyConnected::~CpuFullyConnected() = default;
void CpuFullyConnected::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
{
if(_is_quantized_asymmetric)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate src and weights offset
const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
// Configure gemmlowp function and output stage for asymmetric quantized types
GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
const Status status = get_gemmlowp_output_stage_info(&src_info, &weights_info, dst, act, gemmlowp_output_stage_info);
ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
GEMMInfo gemm_info;
gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
gemm_info.set_activation_info(act);
gemm_info.set_fast_math(_enable_fast_math);
_mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
_mm_gemmlowp->configure(&src_info, &weights_info, biases, dst, gemm_info);
}
else
{
// Configure matrix multiply kernel
GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
gemm_info.set_activation_info(act);
gemm_info.set_fast_math(_enable_fast_math);
_mm_gemm = std::make_unique<CpuGemm>();
_mm_gemm->configure(src, weights, biases, dst, 1.f, 1.0f, gemm_info);
}
}
void CpuFullyConnected::configure_conv_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
{
ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
// If the fully connected layer is called after a convolution layer, the src tensor must be linearized
// Initialize output tensor for flatten
auto_init_if_empty(_flattened_src, src->clone()->set_tensor_shape(compute_flatten_shape(src)));
_flatten = std::make_unique<CpuFlatten>();
_flatten->configure(src, &_flattened_src);
// Configure matrix multiply kernel
configure_mm(&_flattened_src, weights, biases, dst, act);
}
void CpuFullyConnected::configure_fc_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
{
ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
// Configure matrix multiply kernel
configure_mm(src, weights, biases, dst, act);
}
void CpuFullyConnected::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
FullyConnectedLayerInfo fc_info)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_ERROR_THROW_ON(CpuFullyConnected::validate(src,
weights,
biases != nullptr ? biases : nullptr,
dst,
fc_info));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, fc_info);
_needs_weights_conversion = false;
_needs_weights_reshape = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
_needs_weights_reshape = _needs_weights_reshape && !fc_info.retain_internal_weights;
_is_fc_after_conv = true;
_is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
_is_prepared = false;
_trans_weights_idx = AuxTensorIdx::Count;
_enable_fast_math = fc_info.enable_fast_math;
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensorInfo *weights_to_use = weights;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = dst->dimension(1) > 1;
if(is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
src->tensor_shape().cend(),
dst->tensor_shape().cbegin() + 1));
}
else
{
_is_fc_after_conv = src->num_dimensions() > 1;
}
// Reshape weights if needed
if(_needs_weights_reshape)
{
// Reshape the weights
_transpose_weights = std::make_unique<kernels::CpuTransposeKernel>();
_transpose_weights->configure(weights, &_reshaped_weights);
weights_to_use = &_reshaped_weights;
_trans_weights_idx = AuxTensorIdx::TransposedWeights;
}
// Convert weights if needed
if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
{
// Convert weights
_convert_weights = std::make_unique<CpuConvertFullyConnectedWeights>();
_convert_weights->configure(weights_to_use,
&_converted_weights,
src->tensor_shape(),
fc_info.weights_trained_layout);
weights_to_use = &_converted_weights;
_needs_weights_conversion = true;
_trans_weights_idx = AuxTensorIdx::ConvertedWeights;
}
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
}
// Retain the tensorinfo with the weights to use
if(_needs_weights_reshape || _needs_weights_conversion)
{
_trans_weights = *weights_to_use;
}
// Set auxiliary memory requirements
auto gemm_mem_req = (_is_quantized_asymmetric) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
{
_aux_mem[i] = gemm_mem_req[i];
}
if(_aux_mem[Pretranspose].size > 0)
{
// Release permuted weights at the end of prepare as they are further transposed by the assembly dispatch
// Do not release them if biases are dynamic and data type is quantized, since the weights tensor will be used for biases offset calculation
_aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), (_is_quantized_asymmetric
&& biases && !(biases->are_values_constant())) ?
MemoryLifetime::Persistent :
MemoryLifetime::Prepare,
_reshaped_weights.total_size());
_aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
}
else
{
_aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), _needs_weights_conversion ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _reshaped_weights.total_size());
_aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Persistent, _converted_weights.total_size());
}
_aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
}
Status CpuFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
&& fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_RETURN_ERROR_ON(!weights->are_values_constant() && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
bool is_fc_after_conv = true;
const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)));
const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensorInfo *src_to_use = src;
const ITensorInfo *weights_to_use = weights;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = dst->dimension(1) > 1;
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
if(is_data_type_quantized(src->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
}
}
if(is_batched_fc_layer)
{
is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
src->tensor_shape().cend(),
dst->tensor_shape().cbegin() + 1));
}
else
{
is_fc_after_conv = src->num_dimensions() > 1;
}
if(!weights_reshaped)
{
// Validate reshape weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuTransposeKernel::validate(weights, &reshaped_weights));
weights_to_use = &reshaped_weights;
}
if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
{
// Validate convert weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(CpuConvertFullyConnectedWeights::validate(weights_to_use,
&converted_weights,
src->tensor_shape(),
fc_info.weights_trained_layout));
weights_to_use = &converted_weights;
}
if(is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
// Validate flatten kernel
ARM_COMPUTE_RETURN_ON_ERROR(CpuFlatten::validate(src, &flatten_src));
src_to_use = &flatten_src;
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
}
// Validate matrix multiply kernel
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(src_to_use, weights_to_use, biases, dst, fc_info.activation_info, fc_info.enable_fast_math));
return Status{};
}
void CpuFullyConnected::run(ITensorPack &tensors)
{
prepare(tensors);
auto src = tensors.get_const_tensor(ACL_SRC_0);
CpuAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
CpuAuxTensorHandler transformed_wei(offset_int_vec(_trans_weights_idx), _trans_weights, tensors, false);
// Linearize src if it comes from a convolutional layer
if(_is_fc_after_conv)
{
ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
_flatten->run(flatten_pack);
}
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
if(_needs_weights_reshape || _needs_weights_conversion)
{
gemm_pack.add_const_tensor(ACL_SRC_1, transformed_wei.get());
}
// Run matrix multiply
if(_is_quantized_asymmetric)
{
_mm_gemmlowp->run(gemm_pack);
}
else
{
_mm_gemm->run(gemm_pack);
}
}
void CpuFullyConnected::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
auto weights = tensors.get_const_tensor(ACL_SRC_1);
CpuAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
CpuAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
// Pointer to current weights
const ITensor *cur_weights = weights;
// Reshape of the weights (happens only once)
if(_needs_weights_reshape)
{
// Run reshape weights kernel and mark weights as unused
ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
NEScheduler::get().schedule_op(_transpose_weights.get(), Window::DimY, _transpose_weights->window(), transpose_pack);
cur_weights->mark_as_unused();
cur_weights = reshaped_weights.get();
}
// Convert weights if needed (happens only once)
if(_needs_weights_conversion)
{
ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
_convert_weights->run(convert_pack);
cur_weights->mark_as_unused();
cur_weights = converted_weights.get();
}
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(ACL_SRC_1, cur_weights);
// Prepare GEMM prepare and release unused weights
if(!_is_quantized_asymmetric)
{
_mm_gemm->prepare(gemm_pack);
}
else
{
_mm_gemmlowp->prepare(gemm_pack);
}
_is_prepared = true;
}
}
experimental::MemoryRequirements CpuFullyConnected::workspace() const
{
return _aux_mem;
}
} // namespace cpu
} // namespace arm_compute