blob: be6be047038049a4bb8318adaa360e54fcd33263 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights()
: _weights_reshape_kernel()
{
}
void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(),
(biases != nullptr) ? biases->info() : nullptr,
output->info(),
num_groups));
const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr;
_weights_reshape_kernel.configure(weights, biases_to_use, output, num_groups);
output->info()->set_quantization_info(weights->info()->quantization_info());
}
Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
if(biases != nullptr)
{
const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
CLWeightsReshapeKernel::validate(weights, biases, output, num_groups);
}
return Status{};
}
void CLConvolutionLayerReshapeWeights::run()
{
CLScheduler::get().enqueue(_weights_reshape_kernel);
}
CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(),
_original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _fuse_activation(true), _is_prepared(false)
{
}
void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
int gemm_3d_depth, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), gemmlowp_output_stage, gemm_3d_depth, _skip_im2col, act_info));
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
gemm_3d_depth, // depth_output_gemm3d
_skip_im2col, // reinterpret_input_as_3d
false, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
false, // fp_mixed_precision
true, // broadcast_bias
act_info); // activation_info
if(_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
_mm_gemmlowp.configure(input, weights, biases, output, gemm_info);
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
else
{
// Configure matrix multiply function
_mm_gemm.configure(input, weights, biases, output, 1.0f, 1.0f, gemm_info);
}
}
Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col, const ActivationLayerInfo &act_info)
{
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
gemm_3d_depth, // depth_output_gemm3d
skip_im2col, // reinterpret_input_as_3d
false, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
false, // fp_mixed_precision
true, // broadcast_bias
act_info); // activation_info
if(is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->quantization_info();
const QuantizationInfo weights_quantization_info = weights->quantization_info();
std::unique_ptr<ITensorInfo> input_qa = input->clone();
std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
// Perform validation step on GEMMLowp
return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, gemm_info);
}
else
{
// Perform validation step on Matrix multiply function
return CLGEMM::validate(input, weights, biases, output, 1.0f, 1.0f, gemm_info);
}
}
void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
conv_info,
weights_info,
dilation,
act_info,
num_groups));
const DataType data_type = input->info()->data_type();
const DataLayout data_layout = input->info()->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->info()->dimension(idx_width);
const unsigned int kernel_height = weights->info()->dimension(idx_height);
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform();
_is_prepared = weights_info.retain_internal_weights();
_original_weights = weights;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
_skip_col2im = data_layout == DataLayout::NHWC;
// Only for quantize there are few cases where we cannot fuse the activation function in GEMM
_fuse_activation = true;
// Set the GPU target for im2col and col2im
_im2col_kernel.set_target(CLScheduler::get().target());
_col2im_kernel.set_target(CLScheduler::get().target());
const ICLTensor *gemm_input_to_use = input;
ICLTensor *gemm_output_to_use = output;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width),
input->info()->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels) / num_groups;
const ICLTensor *biases_to_use = biases;
bool append_bias = false;
if(num_groups != 1 && biases != nullptr)
{
// num_groups != 1 can only be for NCHW
// Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor
biases_to_use = nullptr;
append_bias = true;
_reshape_weights.configure(weights, biases, &_weights_reshaped, num_groups);
}
else
{
_reshape_weights.configure(weights, nullptr, &_weights_reshaped, num_groups);
}
// Create tensor to store im2col reshaped inputs
if(!_skip_im2col)
{
_memory_group.manage(&_im2col_output);
// Configure and tune im2col. im2col output shape is auto-initialized
_im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation, num_groups);
// Set quantization info
_im2col_output.info()->set_quantization_info(input->info()->quantization_info());
CLScheduler::get().tune_kernel_static(_im2col_kernel);
// Update GEMM input
gemm_input_to_use = &_im2col_output;
}
// Create GEMM output tensor
if(!_skip_col2im)
{
TensorShape shape_gemm;
// If we cannot skip col2im it means we run im2col as well
shape_gemm = _im2col_output.info()->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
// TODO(COMPMID-2078): input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo info_gemm(shape_gemm, 1, data_type);
info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
// Update GEMM output
gemm_output_to_use = &_gemm_output;
}
GEMMLowpOutputStageInfo gemmlowp_output_stage;
gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage.gemmlowp_offset = 0;
gemmlowp_output_stage.gemmlowp_multiplier = 0;
gemmlowp_output_stage.gemmlowp_shift = 0;
// Configure output stage for quantized case
if(_is_quantized)
{
const auto output_quant_info = (output->info()->total_size() == 0) ? iq_info : oq_info;
const float multiplier = (iq_info.scale * wq_info.scale) / output_quant_info.scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
int min_activation = 0;
int max_activation = 0;
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
};
if(act_info.enabled())
{
if(supported_acts.count(act_info.activation()) != 0)
{
const int a_const_int = quantize_qasymm8(act_info.a(), output_quant_info);
const int b_const_int = quantize_qasymm8(act_info.b(), output_quant_info);
min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;
}
else
{
_fuse_activation = false;
}
}
// Set the GEMMLowp output stage info
gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
gemmlowp_output_stage.gemmlowp_shift = output_shift;
gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
// Configure and tune GEMM
// In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;
configure_mm(gemm_input_to_use, &_weights_reshaped, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, act_info);
if(!_skip_im2col)
{
_im2col_output.allocator()->allocate();
}
if(!_skip_col2im)
{
// Configure and tune Col2Im
_col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups);
CLScheduler::get().tune_kernel_static(_col2im_kernel);
}
if(!_skip_col2im)
{
_gemm_output.allocator()->allocate();
}
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h),
"Output shape does not match the expected one");
if(!_fuse_activation)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
ARM_COMPUTE_UNUSED(weights_info);
}
Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8");
ARM_COMPUTE_RETURN_ERROR_ON(((input->dimension(2) / weights->dimension(2)) != num_groups) && (input->data_layout() == DataLayout::NCHW));
const DataLayout data_layout = input->data_layout();
const DataType data_type = input->data_type();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
TensorInfo im2col_reshaped_info{};
TensorInfo info_gemm{};
TensorInfo weights_reshaped_info{};
const ITensorInfo *gemm_input_to_use = input;
const ITensorInfo *gemm_output_to_use = output;
const ITensorInfo *weights_to_use = weights;
const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
const bool skip_col2im = data_layout == DataLayout::NHWC;
bool fuse_activation = true;
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
// Validate biases
if(biases != nullptr)
{
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if(act_info.enabled())
{
ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a());
}
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width),
input->dimension(idx_height),
kernel_width,
kernel_height,
conv_info,
dilation);
unsigned int mat_weights_cols = weights->dimension(idx_kernels) / num_groups;
const ITensorInfo *biases_to_use = biases;
bool append_bias = false;
if(num_groups != 1 && biases != nullptr)
{
// num_groups != 1 can only be for NCHW
// Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor
biases_to_use = nullptr;
append_bias = true;
ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, biases, nullptr, num_groups));
weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, true, num_groups), 1, data_type);
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, nullptr, nullptr, num_groups));
weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, false, num_groups), 1, data_type);
}
weights_to_use = &weights_reshaped_info;
if(!skip_im2col)
{
const Size2D kernel_dims(kernel_width, kernel_height);
// Output tensor auto initialization if not yet initialized
TensorShape expected_output_shape = compute_im2col_conv_shape(input, kernel_dims, conv_info, append_bias, dilation, num_groups == 1, num_groups);
auto_init_if_empty(im2col_reshaped_info, input->clone()->set_tensor_shape(expected_output_shape));
ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &im2col_reshaped_info, kernel_dims, conv_info, append_bias, dilation, num_groups));
gemm_input_to_use = &im2col_reshaped_info;
}
// Create GEMM output tensor
if(!skip_col2im)
{
TensorShape shape_gemm;
shape_gemm = gemm_input_to_use->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
info_gemm = TensorInfo(shape_gemm, 1, data_type);
info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout());
gemm_output_to_use = &info_gemm;
}
GEMMLowpOutputStageInfo gemmlowp_output_stage;
gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage.gemmlowp_offset = 0;
gemmlowp_output_stage.gemmlowp_multiplier = 0;
gemmlowp_output_stage.gemmlowp_shift = 0;
if(is_quantized)
{
const auto output_quant_info = (output->total_size() == 0) ? iq_info : oq_info;
const float multiplier = (iq_info.scale * wq_info.scale) / output_quant_info.scale;
int output_multiplier = 0;
int output_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));
int min_activation = 0;
int max_activation = 0;
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
};
if(act_info.enabled())
{
if(supported_acts.count(act_info.activation()) != 0)
{
const int a_const_int = quantize_qasymm8(act_info.a(), output_quant_info);
const int b_const_int = quantize_qasymm8(act_info.b(), output_quant_info);
min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;
}
else
{
fuse_activation = false;
}
}
// Set the GEMMLowp output stage info
gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
gemmlowp_output_stage.gemmlowp_shift = output_shift;
gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
// In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, skip_im2col, act_info));
// Validate Col2Im
if(!skip_col2im)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups));
}
//Validate Activation Layer
if(!fuse_activation)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
void CLGEMMConvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Run im2col
if(!_skip_im2col)
{
CLScheduler::get().enqueue(_im2col_kernel);
}
// Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions
if(_is_quantized)
{
// Run gemmlowp
_mm_gemmlowp.run();
}
else
{
// Run gemm
_mm_gemm.run();
}
// Reshape output matrix
if(!_skip_col2im)
{
CLScheduler::get().enqueue(_col2im_kernel, false);
}
//Run Activation Layer if we cannot fuse in GEMM
if(!_fuse_activation)
{
_activationlayer_function.run();
}
}
void CLGEMMConvolutionLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run weights reshaping and mark original weights tensor as unused
_weights_reshaped.allocator()->allocate();
_reshape_weights.run();
_original_weights->mark_as_unused();
// Prepare GEMM
_is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare();
if(!_weights_reshaped.is_used())
{
_weights_reshaped.allocator()->free();
}
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}