blob: 0051d3d9dcb819d75c91a1e8c05ba22261a08a1c [file] [log] [blame]
/*
* Copyright (c) 2017-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/gemm_matrix_mul/generic/neon/impl.h"
#include "src/core/utils/helpers/float_ops.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
void vector_matrix_multiply_f32(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha)
{
const auto width_matrix_b = static_cast<int>(dst->info()->dimension(0));
const auto in_b_stride = static_cast<int>(rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type()));
const auto num_elems_vec_a = static_cast<int>(lhs->info()->dimension(0));
// The implementation computes 16 elements per iteration
const int window_start_x = 16 * info.thread_id;
const int window_step_x = 16 * info.num_threads;
// Make sure (window_end_x - window_start_x) is a multiple of window_step_x
const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
Window win_out(window);
win_out.set(Window::DimX, Window::Dimension(0, 1, 1));
win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
Window win_a(window);
win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
Window win_b;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if(rhs->info()->num_dimensions() >= 3)
{
win_b = window;
}
win_b.set(Window::DimX, Window::Dimension(0, 1, 1));
win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
Iterator ina(lhs, win_a);
Iterator inb(rhs, win_b);
Iterator out(dst, win_out);
const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
execute_window_loop(win_out, [&](const Coordinates &)
{
int x = window_start_x;
// Here we don't check for x lower equal than (window_end_x - window_step_x) because of
// window_end_x is computed above which may cause out-of-bound writes to the dst.
for(; x < (window_end_x - window_step_x); x += window_step_x)
{
if(x > width_matrix_b)
{
return;
}
float32x4_t acc0 = vdupq_n_f32(0.f);
float32x4_t acc1 = vdupq_n_f32(0.f);
float32x4_t acc2 = vdupq_n_f32(0.f);
float32x4_t acc3 = vdupq_n_f32(0.f);
auto vec_a = reinterpret_cast<const float *>(ina.ptr());
auto matrix_b = reinterpret_cast<const float *>(inb.ptr()) + x;
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + in_b_stride)));
#endif /* __arm__ */
auto vec_a_end_addr = vec_a + num_elems_vec_a;
for(; vec_a <= (vec_a_end_addr - 4);)
{
float32x2_t a0l = vld1_f32(vec_a);
float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 1 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 2 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 3 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 4 * in_b_stride)));
#endif /* __arm__ */
acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);
acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);
vec_a += 2;
matrix_b += 2 * in_b_stride;
a0l = vld1_f32(vec_a);
b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);
acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);
acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);
vec_a += 2;
matrix_b += 2 * in_b_stride;
}
for(; vec_a < vec_a_end_addr; ++vec_a)
{
const float a0 = *vec_a;
const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
acc0 = vmlaq_n_f32(acc0, b00, a0);
acc1 = vmlaq_n_f32(acc1, b01, a0);
acc2 = vmlaq_n_f32(acc2, b02, a0);
acc3 = vmlaq_n_f32(acc3, b03, a0);
matrix_b += in_b_stride;
}
// Multiply by the weight of matrix product (alpha)
if(multiply_alpha)
{
acc0 = vmulq_f32(acc0, alpha_f32);
acc1 = vmulq_f32(acc1, alpha_f32);
acc2 = vmulq_f32(acc2, alpha_f32);
acc3 = vmulq_f32(acc3, alpha_f32);
}
const auto vec_out = reinterpret_cast<float *>(out.ptr()) + x;
vst1q_f32(vec_out + 0, acc0);
vst1q_f32(vec_out + 4, acc1);
vst1q_f32(vec_out + 8, acc2);
vst1q_f32(vec_out + 12, acc3);
}
// Left-over loop
for(; x < window_end_x; ++x)
{
if(x > width_matrix_b)
{
return;
}
float32x4_t vacc = vdupq_n_f32(0.f);
auto vec_a = reinterpret_cast<const float *>(ina.ptr());
auto matrix_b = reinterpret_cast<const float *>(inb.ptr()) + x;
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + in_b_stride)));
#endif /* __arm__ */
auto vec_a_end_addr = vec_a + num_elems_vec_a;
for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4)
{
const float32x4_t a0l = vld1q_f32(vec_a);
const float32x4_t b_col =
{
*(matrix_b + 0 * in_b_stride),
*(matrix_b + 1 * in_b_stride),
*(matrix_b + 2 * in_b_stride),
*(matrix_b + 3 * in_b_stride),
};
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 1 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 2 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 3 * in_b_stride)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 4 * in_b_stride)));
#endif /* __arm__ */
vacc = vmlaq_f32(vacc, b_col, a0l);
matrix_b += 4 * in_b_stride;
}
float acc = vgetq_lane_f32(vacc, 0) + vgetq_lane_f32(vacc, 1) + vgetq_lane_f32(vacc, 2) + vgetq_lane_f32(vacc, 3);
for(; vec_a < vec_a_end_addr; ++vec_a)
{
const float a0 = *vec_a;
const float b00 = *matrix_b;
acc += b00 * a0;
matrix_b += in_b_stride;
}
// Multiply by the weight of matrix product (alpha)
if(multiply_alpha)
{
acc *= alpha;
}
const auto vec_out = reinterpret_cast<float *>(out.ptr()) + x;
*vec_out = acc;
}
},
ina, inb, out);
}
void matrix_matrix_multiply_f32(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha)
{
ARM_COMPUTE_UNUSED(info);
const int out_width = static_cast<int>(dst->info()->dimension(0));
const int out_height = static_cast<int>(dst->info()->dimension(1));
const size_t in_b_stride = rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type());
const size_t out_stride1 = dst->info()->strides_in_bytes()[1] / data_size_from_type(dst->info()->data_type());
const size_t out_stride2 = out_stride1 * 2;
const size_t out_stride3 = out_stride1 * 3;
const int num_elems_matrix_b_x = rhs->info()->dimension(0);
// Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the dst matrix
Window win_a(window);
win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));
Window win_b;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if(rhs->info()->num_dimensions() >= 3)
{
win_b = window;
}
// Set step_x and step_y for matrix B. Scale by a factor of 4 the X range as the input transposed matrix A has 4 times less the cols of the dst matrix
// The step along the x direction is 2 times the in_b_stride because for each iteration we compute 2 blocks of size 4x4
win_b.set(Window::DimX, Window::Dimension(window.x().start() / 4, window.x().end() / 4, 2 * in_b_stride));
win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator ina(lhs, win_a);
Iterator inb(rhs, win_b);
Iterator out(dst, window);
const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
// The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW
// The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
// All the values needed for computing a single 4x4 block will be read from consecutive memory positions
execute_window_loop(window, [&](const Coordinates & id)
{
auto mtx_a0 = reinterpret_cast<const float *>(ina.ptr());
auto mtx_b0 = reinterpret_cast<const float *>(inb.ptr());
auto mtx_b1 = mtx_b0 + in_b_stride;
float32x4_t acc00 = vdupq_n_f32(0.f);
float32x4_t acc10 = vdupq_n_f32(0.f);
float32x4_t acc20 = vdupq_n_f32(0.f);
float32x4_t acc30 = vdupq_n_f32(0.f);
float32x4_t acc01 = vdupq_n_f32(0.f);
float32x4_t acc11 = vdupq_n_f32(0.f);
float32x4_t acc21 = vdupq_n_f32(0.f);
float32x4_t acc31 = vdupq_n_f32(0.f);
#if __arm__
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */
auto mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;
for(; mtx_b0 <= (mtx_b0_end_addr - 32);)
{
float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0);
float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1);
float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2);
float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3);
float32x4_t b00 = vld1q_f32(mtx_b0);
float32x4_t b10 = vld1q_f32(mtx_b1);
float32x4_t b01 = vld1q_f32(mtx_b0 + 4);
float32x4_t b11 = vld1q_f32(mtx_b1 + 4);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b00, a0);
acc10 = vmlaq_f32(acc10, b00, a1);
acc20 = vmlaq_f32(acc20, b00, a2);
acc30 = vmlaq_f32(acc30, b00, a3);
float32x4_t a4 = vld1q_dup_f32(mtx_a0 + 4);
float32x4_t a5 = vld1q_dup_f32(mtx_a0 + 5);
float32x4_t a6 = vld1q_dup_f32(mtx_a0 + 6);
float32x4_t a7 = vld1q_dup_f32(mtx_a0 + 7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b10, a0);
acc11 = vmlaq_f32(acc11, b10, a1);
acc21 = vmlaq_f32(acc21, b10, a2);
acc31 = vmlaq_f32(acc31, b10, a3);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b01, a4);
acc10 = vmlaq_f32(acc10, b01, a5);
acc20 = vmlaq_f32(acc20, b01, a6);
acc30 = vmlaq_f32(acc30, b01, a7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b11, a4);
acc11 = vmlaq_f32(acc11, b11, a5);
acc21 = vmlaq_f32(acc21, b11, a6);
acc31 = vmlaq_f32(acc31, b11, a7);
mtx_a0 += 8;
mtx_b0 += 8;
mtx_b1 += 8;
a0 = vld1q_dup_f32(mtx_a0 + 0);
a1 = vld1q_dup_f32(mtx_a0 + 1);
a2 = vld1q_dup_f32(mtx_a0 + 2);
a3 = vld1q_dup_f32(mtx_a0 + 3);
b00 = vld1q_f32(mtx_b0);
b10 = vld1q_f32(mtx_b1);
b01 = vld1q_f32(mtx_b0 + 4);
b11 = vld1q_f32(mtx_b1 + 4);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b00, a0);
acc10 = vmlaq_f32(acc10, b00, a1);
acc20 = vmlaq_f32(acc20, b00, a2);
acc30 = vmlaq_f32(acc30, b00, a3);
a4 = vld1q_dup_f32(mtx_a0 + 4);
a5 = vld1q_dup_f32(mtx_a0 + 5);
a6 = vld1q_dup_f32(mtx_a0 + 6);
a7 = vld1q_dup_f32(mtx_a0 + 7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b10, a0);
acc11 = vmlaq_f32(acc11, b10, a1);
acc21 = vmlaq_f32(acc21, b10, a2);
acc31 = vmlaq_f32(acc31, b10, a3);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b01, a4);
acc10 = vmlaq_f32(acc10, b01, a5);
acc20 = vmlaq_f32(acc20, b01, a6);
acc30 = vmlaq_f32(acc30, b01, a7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b11, a4);
acc11 = vmlaq_f32(acc11, b11, a5);
acc21 = vmlaq_f32(acc21, b11, a6);
acc31 = vmlaq_f32(acc31, b11, a7);
mtx_a0 += 8;
mtx_b0 += 8;
mtx_b1 += 8;
a0 = vld1q_dup_f32(mtx_a0 + 0);
a1 = vld1q_dup_f32(mtx_a0 + 1);
a2 = vld1q_dup_f32(mtx_a0 + 2);
a3 = vld1q_dup_f32(mtx_a0 + 3);
b00 = vld1q_f32(mtx_b0);
b10 = vld1q_f32(mtx_b1);
b01 = vld1q_f32(mtx_b0 + 4);
b11 = vld1q_f32(mtx_b1 + 4);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b00, a0);
acc10 = vmlaq_f32(acc10, b00, a1);
acc20 = vmlaq_f32(acc20, b00, a2);
acc30 = vmlaq_f32(acc30, b00, a3);
a4 = vld1q_dup_f32(mtx_a0 + 4);
a5 = vld1q_dup_f32(mtx_a0 + 5);
a6 = vld1q_dup_f32(mtx_a0 + 6);
a7 = vld1q_dup_f32(mtx_a0 + 7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b10, a0);
acc11 = vmlaq_f32(acc11, b10, a1);
acc21 = vmlaq_f32(acc21, b10, a2);
acc31 = vmlaq_f32(acc31, b10, a3);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b01, a4);
acc10 = vmlaq_f32(acc10, b01, a5);
acc20 = vmlaq_f32(acc20, b01, a6);
acc30 = vmlaq_f32(acc30, b01, a7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b11, a4);
acc11 = vmlaq_f32(acc11, b11, a5);
acc21 = vmlaq_f32(acc21, b11, a6);
acc31 = vmlaq_f32(acc31, b11, a7);
mtx_a0 += 8;
mtx_b0 += 8;
mtx_b1 += 8;
a0 = vld1q_dup_f32(mtx_a0 + 0);
a1 = vld1q_dup_f32(mtx_a0 + 1);
a2 = vld1q_dup_f32(mtx_a0 + 2);
a3 = vld1q_dup_f32(mtx_a0 + 3);
b00 = vld1q_f32(mtx_b0);
b10 = vld1q_f32(mtx_b1);
b01 = vld1q_f32(mtx_b0 + 4);
b11 = vld1q_f32(mtx_b1 + 4);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b00, a0);
acc10 = vmlaq_f32(acc10, b00, a1);
acc20 = vmlaq_f32(acc20, b00, a2);
acc30 = vmlaq_f32(acc30, b00, a3);
a4 = vld1q_dup_f32(mtx_a0 + 4);
a5 = vld1q_dup_f32(mtx_a0 + 5);
a6 = vld1q_dup_f32(mtx_a0 + 6);
a7 = vld1q_dup_f32(mtx_a0 + 7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b10, a0);
acc11 = vmlaq_f32(acc11, b10, a1);
acc21 = vmlaq_f32(acc21, b10, a2);
acc31 = vmlaq_f32(acc31, b10, a3);
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b01, a4);
acc10 = vmlaq_f32(acc10, b01, a5);
acc20 = vmlaq_f32(acc20, b01, a6);
acc30 = vmlaq_f32(acc30, b01, a7);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b11, a4);
acc11 = vmlaq_f32(acc11, b11, a5);
acc21 = vmlaq_f32(acc21, b11, a6);
acc31 = vmlaq_f32(acc31, b11, a7);
mtx_a0 += 8;
mtx_b0 += 8;
mtx_b1 += 8;
}
for(; mtx_b0 < mtx_b0_end_addr;)
{
float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0);
float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1);
float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2);
float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3);
float32x4_t b00 = vld1q_f32(mtx_b0);
float32x4_t b10 = vld1q_f32(mtx_b1);
#if __arm__
asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */
// 4x4 block 0
acc00 = vmlaq_f32(acc00, b00, a0);
acc10 = vmlaq_f32(acc10, b00, a1);
acc20 = vmlaq_f32(acc20, b00, a2);
acc30 = vmlaq_f32(acc30, b00, a3);
// 4x4 block 1
acc01 = vmlaq_f32(acc01, b10, a0);
acc11 = vmlaq_f32(acc11, b10, a1);
acc21 = vmlaq_f32(acc21, b10, a2);
acc31 = vmlaq_f32(acc31, b10, a3);
mtx_a0 += 4;
mtx_b0 += 4;
mtx_b1 += 4;
}
// Multiply by the weight of matrix product (alpha)
if(multiply_alpha)
{
acc00 = vmulq_f32(acc00, alpha_f32);
acc10 = vmulq_f32(acc10, alpha_f32);
acc20 = vmulq_f32(acc20, alpha_f32);
acc30 = vmulq_f32(acc30, alpha_f32);
acc01 = vmulq_f32(acc01, alpha_f32);
acc11 = vmulq_f32(acc11, alpha_f32);
acc21 = vmulq_f32(acc21, alpha_f32);
acc31 = vmulq_f32(acc31, alpha_f32);
}
const auto mtx_out0 = reinterpret_cast<float *>(out.ptr());
const auto mtx_out1 = mtx_out0 + 4;
if(id.x() < (out_width - 8))
{
vst1q_f32(mtx_out0, acc00);
vst1q_f32(mtx_out1, acc01);
if(id.y() + 1 < out_height)
{
vst1q_f32(mtx_out0 + out_stride1, acc10);
vst1q_f32(mtx_out1 + out_stride1, acc11);
if(id.y() + 2 < out_height)
{
vst1q_f32(mtx_out0 + out_stride2, acc20);
vst1q_f32(mtx_out1 + out_stride2, acc21);
if(id.y() + 3 < out_height)
{
vst1q_f32(mtx_out0 + out_stride3, acc30);
vst1q_f32(mtx_out1 + out_stride3, acc31);
}
}
}
}
else if(id.x() < (out_width - 4))
{
vst1q_f32(mtx_out0, acc00);
if(id.y() + 1 < out_height)
{
vst1q_f32(mtx_out0 + out_stride1, acc10);
if(id.y() + 2 < out_height)
{
vst1q_f32(mtx_out0 + out_stride2, acc20);
if(id.y() + 3 < out_height)
{
vst1q_f32(mtx_out0 + out_stride3, acc30);
}
}
}
// Left-over columns
const int columns_left = out_width - id.x() - 4;
for(auto x = 0; x < columns_left; ++x)
{
*(mtx_out1 + x) = acc01[x];
if(id.y() + 1 < out_height)
{
*(mtx_out1 + x + out_stride1) = acc11[x];
if(id.y() + 2 < out_height)
{
*(mtx_out1 + x + out_stride2) = acc21[x];
if(id.y() + 3 < out_height)
{
*(mtx_out1 + x + out_stride3) = acc31[x];
}
}
}
}
}
else
{
// Left-over columns
const int columns_left = out_width - id.x();
for(int x = 0; x < columns_left; ++x)
{
*(mtx_out0 + x) = acc00[x];
if(id.y() + 1 < out_height)
{
*(mtx_out0 + x + out_stride1) = acc10[x];
if(id.y() + 2 < out_height)
{
*(mtx_out0 + x + out_stride2) = acc20[x];
if(id.y() + 3 < out_height)
{
*(mtx_out0 + x + out_stride3) = acc30[x];
}
}
}
}
}
},
ina, inb, out);
}
} // namespace cpu
} // namespace arm_compute