blob: 2e49614f81bf723cf6a1f822d0104ae13b1926d2 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "tile_helpers.h"
#include "gemm_helpers.h"
#include "repeat.h"
#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
#define CONCAT_INC(K0) INC##K0
#define INC(K0) CONCAT_INC(K0)
#if(SRC_WIDTH % K0)
#define BOUNDARY_CONDITION_X(x, a) \
({ \
a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
})
#else // (SRC_WIDTH % K0)
#define BOUNDARY_CONDITION_X(x, a) \
({})
#endif // (SRC_WIDTH % K0)
#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \
({ \
if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \
{ \
if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
{ \
LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
} \
else \
{ \
LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
} \
} \
else \
{ \
if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
{ \
LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
} \
else \
{ \
LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
} \
} \
})
/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
* the output matrix unrolling the values.
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
* @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
* @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
* @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
* @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
* @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
* @note Only the following values for M0, K0 and V0 are supported:
* M0: 2,3,4,5,6,7,8
* K0: 2,3,4,8,16
* V0: greater than 0
* @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
* @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
*
* @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
* @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
*/
__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst)
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
)
{
// Block size
#define BLOCK_SIZE ((M0) * (K0))
// Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (K0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
// Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (K0) * (V0)
#else // Do not interleave
#define OUTPUT_STEP_X (K0)
#endif // defined(INTERLEAVE)
// Compute source and destination addresses
uint x = get_global_id(0);
uint y = get_global_id(1);
uint z = get_global_id(2);
// ------------------ Compute input/output addresses ---------------------------
// Compute the input address
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
// Compute the output address
__global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
(uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
// Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
#if defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src_stride_z by DEPTH_GEMM3D
input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
// The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
#else // defined(REINTERPRET_INPUT_AS_3D)
input_ptr += z * (uint)src_stride_z;
#endif // defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM
output_ptr += z * (uint)dst_stride_z;
// ---------------------------Load input values --------------------------------
// Load values from the LHS matrix
REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
// ---------------------------Store output values ------------------------------
REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
#undef BLOCK_SIZE
#undef OUTPUT_OFFSET_X
#undef OUTPUT_STEP_X
}
#if M0 == 2
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, M0) \
res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
VSTORE(M0) \
(res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
})
#elif M0 == 3 // M0 == 3
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, M0) \
res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
VSTORE(M0) \
(res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
})
#elif M0 == 4 // M0 == 4
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, M0) \
res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
VSTORE(M0) \
(res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
})
#elif M0 == 5 // M0 == 5
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 4) \
res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
DATA_TYPE res1 = a4.s##i; \
VSTORE(4) \
(res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
*((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
})
#elif M0 == 6 // M0 == 6
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 4) \
res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
VEC_DATA_TYPE(DATA_TYPE, 2) \
res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
VSTORE(4) \
(res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
VSTORE(2) \
(res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
})
#elif M0 == 7 // M0 == 7
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 4) \
res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
VEC_DATA_TYPE(DATA_TYPE, 3) \
res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
VSTORE(4) \
(res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
VSTORE(3) \
(res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
})
#elif M0 == 8 // M0 == 8
#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
({ \
VEC_DATA_TYPE(DATA_TYPE, M0) \
res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
VSTORE(M0) \
(res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
})
#else // M0 not supported
#error "M0 value not supported"
#endif // N0 conditions
/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
* the output matrix unrolling the values.
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
* @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
* @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
* @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
* @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
* @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
* @note Only the following values for M0, K0 and V0 are supported:
* M0: 2,3,4,5,6,7,8
* K0: 2,3,4,8,16
* V0: greater than 0
* @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
* -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
* @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
*
* @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
* @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
*/
__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst)
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
)
{
// Block size
#define BLOCK_SIZE ((M0) * (K0))
// Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (M0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
// Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (M0) * (V0)
#else // Do not interleave
#define OUTPUT_STEP_X (M0)
#endif // defined(INTERLEAVE)
// Compute source and destination addresses
uint x = get_global_id(0);
uint y = get_global_id(1);
uint z = get_global_id(2);
// ------------------ Compute input/output addresses ---------------------------
// Compute the input address
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
// Compute the output address
__global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
(uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
// Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
#if defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src_stride_z by DEPTH_GEMM3D
input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
// The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
#else // defined(REINTERPRET_INPUT_AS_3D)
input_ptr += z * (uint)src_stride_z;
#endif // defined(REINTERPRET_INPUT_AS_3D)
// Add offset for batched GEMM
output_ptr += z * (uint)dst_stride_z;
// ---------------------------Load input values --------------------------------
REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
// ---------------------------Transpose and store block -----------------------
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
#if K0 > 2
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
#endif // K0 > 2
#if K0 > 3
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
#endif // K0 > 3
#if K0 > 4
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
#endif // K0 > 4
#if K0 > 8
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
#endif // K0 > 8
#undef BLOCK_SIZE
#undef OUTPUT_OFFSET_X
#undef OUTPUT_STEP_X
}
#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
#if defined(RESHAPE_RHS_NT)
/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
* the output matrix unrolling the values.
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
* @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
* @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
* @note Only the following values for K0, N0 and H0 are supported:
* N0: 2,3,4,8,16
* K0: 1,2,3,4,8,16
* H0: greater than 0
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: All
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_w The size of the width dimension of the source tensor
* @param[in] src_h The size of the height dimension of the source tensor
* @param[in] src_n The size of the depth dimension of the source tensor
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: All
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_w The size of the width dimension of the destination tensor
* @param[in] dst_h The size of the height dimension of the destination tensor
* @param[in] dst_n The size of the depth dimension of the destination tensor
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] H0 The number of blocks to place on the same row. It must be greater than 0.
*/
__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_T(src, BUFFER),
TENSOR3D_T(dst, BUFFER),
const int H0)
{
// Block size
#define BLOCK_SIZE ((K0) * (N0))
// Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (N0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
// Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (N0) * (H0)
#else // Do not interleave
#define OUTPUT_STEP_X (N0)
#endif // defined(INTERLEAVE)
const int x = GET_SPATIAL_IDX(0, 1, 0);
const int y = GET_SPATIAL_IDX(1, 1, 0);
const int z = GET_SPATIAL_IDX(2, 1, 0);
const int xi = x * N0;
const int yi = y * K0;
const int xo = y * BLOCK_SIZE * H0 + (x % H0) * OUTPUT_OFFSET_X;
const int yo = (x / H0);
src_offset_first_element_in_bytes += yi * src_stride_y + z * src_stride_z;
dst_offset_first_element_in_bytes += yo * dst_stride_y + z * dst_stride_z;
TILE(DATA_TYPE, K0, N0, in);
// Initialize the tile to zero
for(int i = 0; i < K0; ++i)
{
in[i].v = 0;
}
// Load input tile
for(int i = 0; i < K0; ++i)
{
if(yi + i < src_h)
{
in[i].v = V_LOAD(DATA_TYPE, N0, BUFFER, src, xi, i, src_stride_y);
}
}
TILE(uint, K0, 1, dst_indirect_y);
for(int i = 0; i < K0; ++i)
{
dst_indirect_y[i].v = i;
}
T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, K0, N0, 0, BUFFER, dst, xo, (OUTPUT_STEP_X * sizeof(DATA_TYPE)), false, in, dst_indirect_y);
#undef BLOCK_SIZE
#undef OUTPUT_OFFSET_X
#undef OUTPUT_STEP_X
}
#endif // defined(RESHAPE_RHS_NT)
#if defined(RESHAPE_RHS_T)
/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
* the output matrix unrolling the values.
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
* @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
* @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
* @note The option -DTRANSPOSE must passed at compile time.
* @note Only the following values for K0, N0 and H0 are supported:
* N0: 2,3,4,8,16
* K0: 2,3,4,8,16
* H0: greater than 0
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: All
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_w The size of the width dimension of the source tensor
* @param[in] src_h The size of the height dimension of the source tensor
* @param[in] src_n The size of the depth dimension of the source tensor
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] dst_ptr Pointer to the destination tensor. Supported data types: All
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_w The size of the width dimension of the destination tensor
* @param[in] dst_h The size of the height dimension of the destination tensor
* @param[in] dst_n The size of the depth dimension of the destination tensor
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] H0 The number of blocks to place on the same row. It must be greater than 0.
*/
__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_T(src, BUFFER),
TENSOR3D_T(dst, BUFFER),
const int H0)
{
// Block size
#define BLOCK_SIZE ((K0) * (N0))
// Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (K0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
// Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (K0) * (H0)
#else // Do not interleave
#define OUTPUT_STEP_X (K0)
#endif // defined(INTERLEAVE)
const int x = GET_SPATIAL_IDX(0, 1, 0);
const int y = GET_SPATIAL_IDX(1, 1, 0);
const int z = GET_SPATIAL_IDX(2, 1, 0);
const int xi = x * N0;
const int yi = y * K0;
const int xo = y * BLOCK_SIZE * H0 + (x % H0) * OUTPUT_OFFSET_X;
const int yo = (x / H0);
src_offset_first_element_in_bytes += yi * src_stride_y + z * src_stride_z;
dst_offset_first_element_in_bytes += yo * dst_stride_y + z * dst_stride_z;
TILE(DATA_TYPE, K0, N0, in);
TILE(DATA_TYPE, N0, K0, in_tr);
// Initialize the tile to zero
for(int i = 0; i < K0; ++i)
{
in[i].v = 0;
}
// Load input tile
for(int i = 0; i < K0; ++i)
{
if(yi + i < src_h)
{
in[i].v = V_LOAD(DATA_TYPE, N0, BUFFER, src, xi, i, src_stride_y);
}
}
// Transpose input tile
for(int k0 = 0; k0 < K0; ++k0)
{
for(int n0 = 0; n0 < N0; ++n0)
{
in_tr[n0].s[k0] = in[k0].s[n0];
}
}
TILE(uint, N0, 1, dst_indirect_y);
for(int i = 0; i < N0; ++i)
{
dst_indirect_y[i].v = i;
}
T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, N0, K0, 0, BUFFER, dst, xo, (OUTPUT_STEP_X * sizeof(DATA_TYPE)), false, in_tr, dst_indirect_y);
#undef BLOCK_SIZE
#undef OUTPUT_OFFSET_X
#undef OUTPUT_STEP_X
}
#endif // defined(RESHAPE_RHS_T)