blob: dd78d10d164c1a01eb3dc03925dd8e97465798ef [file] [log] [blame]
/*
* Copyright (c) 2020-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEQLSTMLayer.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/QuantizationInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/NEQLSTMLayerNormalizationKernel.h"
#include "src/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h"
namespace arm_compute
{
using namespace arm_compute::utils::info_helpers;
namespace
{
Status validate_mm(GEMMLowpOutputStageInfo &gemmlowp_info,
const ITensorInfo *mm_input,
const ITensorInfo *mm_weights,
const ITensorInfo *bias,
float gemmlowp_scale,
const TensorInfo *mm_res_info,
const TensorInfo *outstage_tensor_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(mm_input, mm_weights, nullptr, mm_res_info));
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(
gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(
NEGEMMLowpOutputStage::validate(mm_res_info, bias, outstage_tensor_info, gemmlowp_info));
return Status{};
}
} // namespace
Status NEQLSTMLayer::validate_layer_norm(const ITensorInfo &in, const ITensorInfo &weight, const ITensorInfo &bias)
{
// Output quantization scale will be different, but ignored here
// since it will be configured at configure() stage.
const TensorInfo out{in};
return NEQLSTMLayerNormalizationKernel::validate(&in, &out, &weight, &bias);
}
void NEQLSTMLayer::configure_layer_norm(NEQLSTMLayer::LayerNormGate g, const ITensor *in)
{
ARM_COMPUTE_ERROR_ON(!_has_layer_norm);
Tensor &out = get_layer_norm_output(g);
_memory_group.manage(&out);
out.allocator()->init(*(in->info()));
get_layer_norm(g) = std::make_unique<NEQLSTMLayerNormalizationKernel>();
get_layer_norm(g)->configure(in, &out, get_layer_norm_weight(g), get_layer_norm_bias(g));
}
NEQLSTMLayer::TensorCopyKernel::~TensorCopyKernel() = default;
Status NEQLSTMLayer::TensorCopyKernel::validate(const ITensorInfo &src, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON(src.tensor_shape().num_dimensions() > max_dimension_supported);
ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().num_dimensions() > max_dimension_supported);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().y() != src.tensor_shape().y());
return Status{};
}
void NEQLSTMLayer::TensorCopyKernel::configure(ITensor &src, ITensor &dst)
{
ARM_COMPUTE_ERROR_THROW_ON(NEQLSTMLayer::TensorCopyKernel::validate(*src.info(), *dst.info()));
ARM_COMPUTE_LOG_PARAMS(src, dst);
_src = &src;
_dst = &dst;
_row_size = std::min(_src->info()->tensor_shape().x(), _dst->info()->tensor_shape().x());
_window = calculate_max_window(*_src->info(), Steps());
}
void NEQLSTMLayer::TensorCopyKernel::run()
{
Iterator input_iter{_src, _window};
Iterator output_iter{_dst, _window};
execute_window_loop(
_window, [&](const Coordinates &) { memcpy(output_iter.ptr(), input_iter.ptr(), _row_size); }, input_iter,
output_iter);
}
NEQLSTMLayer::~NEQLSTMLayer() = default;
NEQLSTMLayer::NEQLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(),
_dequantize_input_to_forget_weights(),
_quantize_input_to_forget_weights(),
_transpose_input_to_forget_weights(),
_transpose_input_to_cell_weights(),
_transpose_input_to_output_weights(),
_transpose_input_to_input_weights(),
_transpose_recurrent_to_forget_weights(),
_transpose_recurrent_to_cell_weights(),
_transpose_recurrent_to_output_weights(),
_transpose_recurrent_to_input_weights(),
_transpose_projection_weights(),
_input_to_input_reduction(),
_recurrent_to_input_reduction(),
_input_to_forget_reduction(),
_recurrent_to_forget_reduction(),
_input_to_cell_reduction(),
_recurrent_to_cell_reduction(),
_input_to_output_reduction(),
_recurrent_to_output_reduction(),
_projection_reduction(),
_projection_bias_add(),
_mm_input_to_forget(),
_mm_recurrent_to_forget(),
_pixelwise_mul_cell_to_forget(),
_input_to_forget_outstage(),
_recurrent_to_forget_outstage(),
_cell_to_forget_outstage(),
_accumulate_input_recurrent_forget(),
_accumulate_cell_forget(),
_forget_gate_sigmoid(),
_mm_input_to_cell(),
_input_to_cell_outstage(),
_mm_recurrent_to_cell(),
_recurrent_to_cell_outstage(),
_accumulate_input_recurrent_modulation(),
_cell_gate_tanh(),
_input_gate_sub(),
_mm_input_to_input(),
_input_to_input_outstage(),
_mm_recurrent_to_input(),
_recurrent_to_input_outstage(),
_accumulate_input_recurrent_input(),
_pixelwise_mul_cell_to_input(),
_cell_to_input_outstage(),
_accumulate_cell_input(),
_input_gate_sigmoid(),
_pixelwise_mul_forget_cell(),
_pixelwise_mul_input_cell(),
_add_forget_cell(),
_cell_clip(),
_mm_input_to_output(),
_input_to_output_outstage(),
_mm_recurrent_to_output(),
_recurrent_to_output_outstage(),
_accumulate_input_recurrent_output(),
_pixelwise_mul_cell_to_output(),
_cell_to_output_outstage(),
_accumulate_cell_to_output(),
_output_gate_sigmoid(),
_hidden_tanh(),
_pixelwise_mul_hidden(),
_hidden_outstage(),
_mm_projection(),
_projection_outstage(),
_accumulate_projection(),
_projection_clip(),
_projection_bias_copy(),
_projection_output_to_accumulate_copy(),
_projection_accumulate_to_output_copy(),
_hidden_to_output_copy(),
_layer_norms(),
_copy_output(),
_layer_norm_weights(),
_layer_norm_bias(),
_layer_norm_output()
{
_memory_group = MemoryGroup(std::move(memory_manager));
}
void NEQLSTMLayer::configure_mm(NEGEMMLowpMatrixMultiplyCore &mm,
NEGEMMLowpOutputStage &outstage,
GEMMLowpOutputStageInfo &gemmlowp_info,
const ITensor *mm_input,
const ITensor *mm_weights,
const ITensor *bias,
Tensor *mm_res,
Tensor *outstage_res,
float gemmlowp_scale,
const TensorInfo &mm_res_info,
const TensorInfo &outstage_tensor_info)
{
_memory_group.manage(mm_res);
_memory_group.manage(outstage_res);
mm_res->allocator()->init(mm_res_info);
outstage_res->allocator()->init(outstage_tensor_info);
// Configure matrix-multiplication
mm.configure(mm_input, mm_weights, nullptr, mm_res);
// Configure output stage
quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift);
outstage.configure(mm_res, bias, outstage_res, gemmlowp_info);
mm_res->allocator()->allocate();
}
void NEQLSTMLayer::configure(const ITensor *input,
const ITensor *input_to_forget_weights,
const ITensor *input_to_cell_weights,
const ITensor *input_to_output_weights,
const ITensor *recurrent_to_forget_weights,
const ITensor *recurrent_to_cell_weights,
const ITensor *recurrent_to_output_weights,
const ITensor *forget_gate_bias,
const ITensor *cell_bias,
const ITensor *output_gate_bias,
const ITensor *cell_state_in,
ITensor *output_state_in,
ITensor *cell_state_out,
ITensor *output_state_out,
ITensor *output,
const LSTMParams<ITensor> &lstm_params)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in,
cell_state_out, output_state_out);
ARM_COMPUTE_LOG_PARAMS(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in,
cell_state_out, output_state_out);
// Set lstm parameters
LSTMParams<ITensorInfo> lstm_params_info{};
build_lstm_params_tensor_info(lstm_params, &lstm_params_info);
_input_to_forget_weights_transposed.info()->set_quantization_info(
input_to_forget_weights->info()->quantization_info());
_input_to_cell_weights_transposed.info()->set_quantization_info(input_to_cell_weights->info()->quantization_info());
_input_to_output_weights_transposed.info()->set_quantization_info(
input_to_output_weights->info()->quantization_info());
_recurrent_to_forget_weights_transposed.info()->set_quantization_info(
recurrent_to_forget_weights->info()->quantization_info());
_recurrent_to_cell_weights_transposed.info()->set_quantization_info(
recurrent_to_cell_weights->info()->quantization_info());
_recurrent_to_output_weights_transposed.info()->set_quantization_info(
recurrent_to_output_weights->info()->quantization_info());
if (input_to_forget_weights->info()->data_type() == DataType::QASYMM8_SIGNED)
{
_convert_input_to_forget_weights_to_qsymm8 = true;
// Setup dequantize output tensor to go from QASYMM8_SIGNED -> F32
_input_to_forget_weights_f32.allocator()->init(
TensorInfo(input_to_forget_weights->info()->tensor_shape(), 1, DataType::F32)
.set_data_layout(input_to_forget_weights->info()->data_layout()));
// Setup the quantize output tensor to go from F32 -> QSYMM8
_input_to_forget_weights_symm8.allocator()->init(
(TensorInfo(input_to_forget_weights->info()->tensor_shape(), 1, DataType::QSYMM8)
.set_data_layout(input_to_forget_weights->info()->data_layout())
.set_quantization_info(input_to_forget_weights->info()->quantization_info())));
_dequantize_input_to_forget_weights.configure(input_to_forget_weights, &_input_to_forget_weights_f32);
_quantize_input_to_forget_weights.configure(&_input_to_forget_weights_f32, &_input_to_forget_weights_symm8);
ARM_COMPUTE_ERROR_THROW_ON(NEQLSTMLayer::validate(
input->info(), _input_to_forget_weights_symm8.info(), input_to_cell_weights->info(),
input_to_output_weights->info(), recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(),
recurrent_to_output_weights->info(), forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info(),
output->info(), lstm_params_info));
}
else
{
ARM_COMPUTE_ERROR_THROW_ON(NEQLSTMLayer::validate(
input->info(), input_to_forget_weights->info(), input_to_cell_weights->info(),
input_to_output_weights->info(), recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(),
recurrent_to_output_weights->info(), forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info(),
output->info(), lstm_params_info));
}
const int batch_size = input->info()->dimension(1);
const int num_units = input_to_output_weights->info()->dimension(1);
const int output_size = output_state_out->info()->dimension(_out_state_output_size_dimension_idx);
const UniformQuantizationInfo qinput = input->info()->quantization_info().uniform();
const UniformQuantizationInfo qcell_state_in = cell_state_in->info()->quantization_info().uniform();
const UniformQuantizationInfo qoutput_state_in = output_state_in->info()->quantization_info().uniform();
_projection_bias = lstm_params.projection_bias();
_input_to_forget_weights = (input_to_forget_weights->info()->data_type() == DataType::QASYMM8_SIGNED)
? &_input_to_forget_weights_symm8
: input_to_forget_weights;
_input_to_cell_weights = input_to_cell_weights;
_input_to_output_weights = input_to_output_weights;
_recurrent_to_forget_weights = recurrent_to_forget_weights;
_recurrent_to_cell_weights = recurrent_to_cell_weights;
_recurrent_to_output_weights = recurrent_to_output_weights;
_projection_weights = lstm_params.projection_weights();
// Layer normalization
_has_layer_norm = lstm_params.use_layer_norm();
if (_has_layer_norm)
{
set_layer_norm_weight(lstm_params.forget_layer_norm_weights(), LayerNormGate::Forget);
set_layer_norm_weight(lstm_params.cell_layer_norm_weights(), LayerNormGate::Cell);
set_layer_norm_weight(lstm_params.input_layer_norm_weights(), LayerNormGate::Input);
set_layer_norm_weight(lstm_params.output_layer_norm_weights(), LayerNormGate::Output);
set_layer_norm_bias(forget_gate_bias, LayerNormGate::Forget);
set_layer_norm_bias(cell_bias, LayerNormGate::Cell);
set_layer_norm_bias(lstm_params.input_gate_bias(), LayerNormGate::Input);
set_layer_norm_bias(output_gate_bias, LayerNormGate::Output);
}
_has_cifg = lstm_params.has_cifg_opt();
_has_projection = lstm_params.has_projection();
_has_peephole = lstm_params.has_peephole_opt();
// Calculate and decompose effective scales for optimizing matmul calculation
const int32_t cell_shift = log2(qcell_state_in.scale);
// Calculate quantized parameters for clipping.
int16_t quantized_cell_clip = 0;
if (lstm_params.cell_clip() > 0.0f)
{
quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
}
_has_cell_clipping = quantized_cell_clip > 0;
// Precompute effective bias for optimizing the matmul computations.
if (!_has_cifg)
{
_input_to_input_weights = lstm_params.input_to_input_weights();
_recurrent_to_input_weights = lstm_params.recurrent_to_input_weights();
_input_to_input_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_recurrent_to_input_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_input_to_input_reduction->configure(_input_to_input_weights->info(), _input_to_input_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_input_reduction->configure(
_recurrent_to_input_weights->info(), _recurrent_to_input_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
}
_input_to_forget_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_recurrent_to_forget_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_input_to_cell_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_recurrent_to_cell_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_input_to_output_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_recurrent_to_output_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_input_to_forget_reduction->configure(input_to_forget_weights->info(), _input_to_forget_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_forget_reduction->configure(
recurrent_to_forget_weights->info(), _recurrent_to_forget_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
_input_to_cell_reduction->configure(input_to_cell_weights->info(), _input_to_cell_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_cell_reduction->configure(
recurrent_to_cell_weights->info(), _recurrent_to_cell_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
_input_to_output_reduction->configure(input_to_output_weights->info(), _input_to_output_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_output_reduction->configure(
recurrent_to_output_weights->info(), _recurrent_to_output_eff_bias.info(),
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true));
if (_has_projection)
{
_projection_reduction = std::make_unique<cpu::kernels::CpuGemmLowpMatrixAReductionKernel>();
_projection_reduction->configure(
_projection_weights->info(), _projection_eff_bias.info(),
GEMMLowpReductionKernelInfo(output_size, false, lstm_params.hidden_state_zero(), true));
if (_projection_bias != nullptr)
{
_projection_bias_add.configure(_projection_bias, &_projection_eff_bias, &_projection_eff_bias,
ConvertPolicy::SATURATE);
}
}
// Pre-transpose weights to be used in GEMM.
_transpose_input_to_forget_weights.configure(input_to_forget_weights, &_input_to_forget_weights_transposed);
_transpose_input_to_cell_weights.configure(input_to_cell_weights, &_input_to_cell_weights_transposed);
_transpose_input_to_output_weights.configure(input_to_output_weights, &_input_to_output_weights_transposed);
_transpose_recurrent_to_forget_weights.configure(recurrent_to_forget_weights,
&_recurrent_to_forget_weights_transposed);
_transpose_recurrent_to_cell_weights.configure(recurrent_to_cell_weights, &_recurrent_to_cell_weights_transposed);
_transpose_recurrent_to_output_weights.configure(recurrent_to_output_weights,
&_recurrent_to_output_weights_transposed);
if (!_has_cifg)
{
_transpose_input_to_input_weights.configure(lstm_params.input_to_input_weights(),
&_input_to_input_weights_transposed);
_transpose_recurrent_to_input_weights.configure(lstm_params.recurrent_to_input_weights(),
&_recurrent_to_input_weights_transposed);
}
if (_has_projection)
{
_transpose_projection_weights.configure(_projection_weights, &_projection_weights_transposed);
}
GEMMLowpOutputStageInfo gemmlowp_info;
gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
gemmlowp_info.output_data_type = DataType::QSYMM16;
const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
// Forget gate.
const TensorInfo forget_gate_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
const float input_to_forget_scale = input_to_forget_weights->info()->quantization_info().uniform().scale *
qinput.scale / lstm_params.forget_intermediate_scale();
configure_mm(_mm_input_to_forget, _input_to_forget_outstage, gemmlowp_info, input,
&_input_to_forget_weights_transposed, &_input_to_forget_eff_bias, &_mm_input_to_forget_res,
&_input_to_forget_outstage_res, input_to_forget_scale, mm_out_info, forget_gate_outstage_info);
const float recurrent_to_forget_scale = recurrent_to_forget_weights->info()->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
configure_mm(_mm_recurrent_to_forget, _recurrent_to_forget_outstage, gemmlowp_info, output_state_in,
&_recurrent_to_forget_weights_transposed, &_recurrent_to_forget_eff_bias, &_mm_recurrent_to_forget_res,
&_recurrent_to_forget_outstage_res, recurrent_to_forget_scale, mm_out_info, forget_gate_outstage_info);
_accumulate_input_recurrent_forget.configure(&_input_to_forget_outstage_res, &_recurrent_to_forget_outstage_res,
&_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE);
_input_to_forget_outstage_res.allocator()->allocate();
if (_has_peephole)
{
_mul_cell_to_forget_res.allocator()->init(TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_forget_res);
_pixelwise_mul_cell_to_forget.configure(cell_state_in, lstm_params.cell_to_forget_weights(),
&_mul_cell_to_forget_res, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
_cell_to_forget_outstage_res.allocator()->init(
TensorInfo(_mul_cell_to_forget_res.info()->tensor_shape(), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.forget_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_forget_outstage_res);
const float cell_to_forget_scale =
std::pow(2, cell_shift) *
lstm_params.cell_to_forget_weights()->info()->quantization_info().uniform().scale /
lstm_params.forget_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift);
_cell_to_forget_outstage.configure(&_mul_cell_to_forget_res, nullptr, &_cell_to_forget_outstage_res,
gemmlowp_info);
_mul_cell_to_forget_res.allocator()->allocate();
_accumulate_cell_forget.configure(&_recurrent_to_forget_outstage_res, &_cell_to_forget_outstage_res,
&_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE);
_cell_to_forget_outstage_res.allocator()->allocate();
}
Tensor *forget_activation_input = &_recurrent_to_forget_outstage_res;
if (_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Forget, forget_activation_input);
forget_activation_input->allocator()->allocate();
forget_activation_input = &get_layer_norm_output(LayerNormGate::Forget);
}
// Output quantization info of Sigmoid and Tanh activations
const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_forget_gate);
_forget_gate.allocator()->init(forget_gate_info);
_forget_gate_sigmoid.configure(forget_activation_input, &_forget_gate,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
forget_activation_input->allocator()->allocate();
// Modulation gate.
const TensorInfo cell_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
const float input_to_cell_scale = input_to_cell_weights->info()->quantization_info().uniform().scale *
qinput.scale / lstm_params.cell_intermediate_scale();
configure_mm(_mm_input_to_cell, _input_to_cell_outstage, gemmlowp_info, input, &_input_to_cell_weights_transposed,
&_input_to_cell_eff_bias, &_mm_input_to_cell_res, &_input_to_cell_outstage_res, input_to_cell_scale,
mm_out_info, cell_outstage_info);
const float recurrent_to_cell_scale = recurrent_to_cell_weights->info()->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
configure_mm(_mm_recurrent_to_cell, _recurrent_to_cell_outstage, gemmlowp_info, output_state_in,
&_recurrent_to_cell_weights_transposed, &_recurrent_to_cell_eff_bias, &_mm_recurrent_to_cell_res,
&_recurrent_to_cell_outstage_res, recurrent_to_cell_scale, mm_out_info, cell_outstage_info);
_accumulate_input_recurrent_modulation.configure(&_input_to_cell_outstage_res, &_recurrent_to_cell_outstage_res,
&_recurrent_to_cell_outstage_res, ConvertPolicy::SATURATE);
_input_to_cell_outstage_res.allocator()->allocate();
Tensor *cell_activation_input = &_recurrent_to_cell_outstage_res;
if (_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Cell, cell_activation_input);
cell_activation_input->allocator()->allocate();
cell_activation_input = &get_layer_norm_output(LayerNormGate::Cell);
}
const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_cell_gate);
_cell_gate.allocator()->init(cell_gate_info);
_cell_gate_tanh.configure(cell_activation_input, &_cell_gate,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
cell_activation_input->allocator()->allocate();
// Input gate.
const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_input_gate.allocator()->init(input_gate_info);
_memory_group.manage(&_input_gate);
if (_has_cifg)
{
_ones.allocator()->init(*_forget_gate.info());
_input_gate_sub.configure(&_ones, &_forget_gate, &_input_gate, ConvertPolicy::SATURATE);
_ones.allocator()->allocate();
}
else
{
const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
const float input_to_input_scale = _input_to_input_weights->info()->quantization_info().uniform().scale *
qinput.scale / lstm_params.input_intermediate_scale();
configure_mm(_mm_input_to_input, _input_to_input_outstage, gemmlowp_info, input,
&_input_to_input_weights_transposed, &_input_to_input_eff_bias, &_mm_input_to_input_res,
&_input_to_input_outstage_res, input_to_input_scale, mm_out_info, input_outstage_info);
const float recurrent_to_input_scale =
_recurrent_to_input_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale /
lstm_params.input_intermediate_scale();
configure_mm(_mm_recurrent_to_input, _recurrent_to_input_outstage, gemmlowp_info, output_state_in,
&_recurrent_to_input_weights_transposed, &_recurrent_to_input_eff_bias,
&_mm_recurrent_to_input_res, &_recurrent_to_input_outstage_res, recurrent_to_input_scale,
mm_out_info, input_outstage_info);
_accumulate_input_recurrent_input.configure(&_input_to_input_outstage_res, &_recurrent_to_input_outstage_res,
&_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE);
_input_to_input_outstage_res.allocator()->allocate();
if (_has_peephole)
{
_mul_cell_to_input_res.allocator()->init(
TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_input_res);
_pixelwise_mul_cell_to_input.configure(cell_state_in, lstm_params.cell_to_input_weights(),
&_mul_cell_to_input_res, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
const float cell_to_input_scale =
std::pow(2, cell_shift) *
lstm_params.cell_to_input_weights()->info()->quantization_info().uniform().scale /
lstm_params.input_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift);
_cell_to_input_outstage_res.allocator()->init(
TensorInfo(_mul_cell_to_input_res.info()->tensor_shape(), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.input_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_input_outstage_res);
_cell_to_input_outstage.configure(&_mul_cell_to_input_res, nullptr, &_cell_to_input_outstage_res,
gemmlowp_info);
_mul_cell_to_input_res.allocator()->allocate();
_accumulate_cell_input.configure(&_recurrent_to_input_outstage_res, &_cell_to_input_outstage_res,
&_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE);
_cell_to_input_outstage_res.allocator()->allocate();
}
Tensor *input_activation_input = &_recurrent_to_input_outstage_res;
if (_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Input, input_activation_input);
input_activation_input->allocator()->allocate();
input_activation_input = &get_layer_norm_output(LayerNormGate::Input);
}
_input_gate_sigmoid.configure(input_activation_input, &_input_gate,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
input_activation_input->allocator()->allocate();
}
// Cell.
// TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplication
_pixelwise_mul_forget_cell.configure(&_forget_gate, cell_state_in, &_forget_gate, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
const float cell_gate_scale = _cell_gate.info()->quantization_info().uniform().scale;
const float mul_input_cell_scale = cell_gate_scale * std::pow(2, 15 + cell_shift);
const TensorInfo mul_input_cell_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(mul_input_cell_scale, 0));
_memory_group.manage(&_mul_input_cell_res);
_mul_input_cell_res.allocator()->init(mul_input_cell_info);
_pixelwise_mul_input_cell.configure(&_input_gate, &_cell_gate, &_mul_input_cell_res, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
_cell_gate.allocator()->allocate();
_add_forget_cell.configure(&_forget_gate, &_mul_input_cell_res, cell_state_out, ConvertPolicy::SATURATE);
_mul_input_cell_res.allocator()->allocate();
_forget_gate.allocator()->allocate();
if (_has_cell_clipping)
{
_cell_clip.configure(cell_state_out, nullptr,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
-quantized_cell_clip, quantized_cell_clip));
}
// Output gate.
const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
const float input_to_output_scale = input_to_output_weights->info()->quantization_info().uniform().scale *
qinput.scale / lstm_params.output_intermediate_scale();
configure_mm(_mm_input_to_output, _input_to_output_outstage, gemmlowp_info, input,
&_input_to_output_weights_transposed, &_input_to_output_eff_bias, &_mm_input_to_output_res,
&_input_to_output_outstage_res, input_to_output_scale, mm_out_info, output_outstage_info);
const float recurrent_to_output_scale = recurrent_to_output_weights->info()->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.output_intermediate_scale();
configure_mm(_mm_recurrent_to_output, _recurrent_to_output_outstage, gemmlowp_info, output_state_in,
&_recurrent_to_output_weights_transposed, &_recurrent_to_output_eff_bias, &_mm_recurrent_to_output_res,
&_recurrent_to_output_outstage_res, recurrent_to_output_scale, mm_out_info, output_outstage_info);
_accumulate_input_recurrent_output.configure(&_recurrent_to_output_outstage_res, &_input_to_output_outstage_res,
&_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE);
_input_to_output_outstage_res.allocator()->allocate();
if (_has_peephole)
{
// TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplication
// Here we are not using the output stage because all operations are done in float
_mul_cell_to_output_res.allocator()->init(TensorInfo(cell_state_out->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_output_res);
_pixelwise_mul_cell_to_output.configure(cell_state_out, lstm_params.cell_to_output_weights(),
&_mul_cell_to_output_res, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
const float cell_to_output_scale =
std::pow(2, cell_shift) *
lstm_params.cell_to_output_weights()->info()->quantization_info().uniform().scale /
lstm_params.output_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift);
_cell_to_output_outstage_res.allocator()->init(
TensorInfo(_mul_cell_to_output_res.info()->tensor_shape(), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.output_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_output_outstage_res);
_cell_to_output_outstage.configure(&_mul_cell_to_output_res, nullptr, &_cell_to_output_outstage_res,
gemmlowp_info);
_mul_cell_to_output_res.allocator()->allocate();
_accumulate_cell_to_output.configure(&_recurrent_to_output_outstage_res, &_cell_to_output_outstage_res,
&_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE);
_cell_to_output_outstage_res.allocator()->allocate();
}
Tensor *output_activation_input = &_recurrent_to_output_outstage_res;
if (_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Output, output_activation_input);
output_activation_input->allocator()->allocate();
output_activation_input = &get_layer_norm_output(LayerNormGate::Output);
}
const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_output_gate);
_output_gate.allocator()->init(output_gate_info);
_output_gate_sigmoid.configure(output_activation_input, &_output_gate,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
output_activation_input->allocator()->allocate();
// Hidden.
_hidden_tanh.configure(cell_state_out, &_input_gate,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
// TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplication
_memory_group.manage(&_hidden_mul_res);
const TensorInfo hidden_mul_res(_input_gate.info()->tensor_shape(), 1, DataType::S32);
_hidden_mul_res.allocator()->init(hidden_mul_res);
_pixelwise_mul_hidden.configure(&_output_gate, &_input_gate, &_hidden_mul_res, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO);
_output_gate.allocator()->allocate();
_input_gate.allocator()->allocate();
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true);
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
gemmlowp_info.output_data_type = output_state_in->info()->data_type();
_projection_tensor_copy_required = (num_units != output_size);
ITensor *hidden_gate_result = output_state_out;
_memory_group.manage(&_hidden_gate);
if (_projection_tensor_copy_required)
{
_hidden_gate.allocator()->init(*output_state_out->info());
_hidden_gate.info()->set_tensor_shape(_hidden_mul_res.info()->tensor_shape());
hidden_gate_result = &_hidden_gate;
}
_hidden_outstage.configure(&_hidden_mul_res, nullptr, hidden_gate_result, gemmlowp_info);
_hidden_mul_res.allocator()->allocate();
// Projection.
if (_has_projection)
{
const TensorInfo projection_outstage_info(*output_state_out->info());
const UniformQuantizationInfo qprojection = _projection_weights->info()->quantization_info().uniform();
const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int8_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int8_t>::max();
gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED;
TensorInfo projection_mm_out_info{mm_out_info};
projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size));
configure_mm(_mm_projection, _projection_outstage, gemmlowp_info, hidden_gate_result,
&_projection_weights_transposed, &_projection_eff_bias, &_mm_projection_res,
&_projection_outstage_res, projection_scale, projection_mm_out_info, projection_outstage_info);
ITensor *accumulate_destination = output_state_out;
if (_projection_tensor_copy_required)
{
_hidden_gate.allocator()->allocate();
_projection_accumulate_res.allocator()->init(*output_state_in->info());
_projection_accumulate_res.info()->set_tensor_shape(_projection_outstage_res.info()->tensor_shape());
_projection_output_to_accumulate_copy.configure(*output_state_in, _projection_accumulate_res);
accumulate_destination = &_projection_accumulate_res;
}
_accumulate_projection.configure(&_projection_outstage_res, accumulate_destination, accumulate_destination,
ConvertPolicy::SATURATE);
_projection_outstage_res.allocator()->allocate();
if (_projection_tensor_copy_required)
{
_projection_accumulate_to_output_copy.configure(_projection_accumulate_res, *output_state_out);
_projection_accumulate_res.allocator()->allocate();
}
int8_t quantized_projection_clip{0};
if (lstm_params.projection_clip() > 0.0f)
{
quantized_projection_clip =
utility::clamp<int8_t>(lstm_params.projection_clip() / qprojection.scale, -128, 127);
}
if (quantized_projection_clip > 0)
{
_projection_clip.configure(output_state_out, nullptr,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
-quantized_projection_clip, quantized_projection_clip));
_has_projection_clipping = true;
}
}
else
{
if (_projection_tensor_copy_required)
{
_hidden_to_output_copy.configure(_hidden_gate, *output_state_out);
_hidden_gate.allocator()->allocate();
}
}
// Copy output_state_out to output
_copy_output.configure(output_state_out, output);
}
Status NEQLSTMLayer::validate(const ITensorInfo *input,
const ITensorInfo *input_to_forget_weights,
const ITensorInfo *input_to_cell_weights,
const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_forget_weights,
const ITensorInfo *recurrent_to_cell_weights,
const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *forget_gate_bias,
const ITensorInfo *cell_bias,
const ITensorInfo *output_gate_bias,
const ITensorInfo *cell_state_in,
const ITensorInfo *output_state_in,
const ITensorInfo *cell_state_out,
const ITensorInfo *output_state_out,
const ITensorInfo *output,
const LSTMParams<ITensorInfo> &lstm_params)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights,
recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias,
cell_state_in, output_state_in, cell_state_out, output_state_out, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() != 2, "Input must have exactly 2 dimensions");
const unsigned int input_size = input->dimension(0);
const unsigned int batch_size = input->dimension(1);
const unsigned int num_units = input_to_output_weights->dimension(1);
const unsigned int output_size = output_state_out->dimension(_out_state_output_size_dimension_idx);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->dimension(0) != input_size);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_output_weights, input_to_forget_weights,
input_to_cell_weights);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->dimension(1) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_output_weights, recurrent_to_forget_weights,
recurrent_to_cell_weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_to_forget_weights, 1, DataType::QASYMM8_SIGNED,
DataType::QSYMM8);
// If the input_to_forget_weights data type is DataType::QSYMM8 then it can never match the other weights as they are all DataType::QASYMM8_SIGNED
if (input_to_forget_weights->data_type() == DataType::QSYMM8)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights,
recurrent_to_output_weights);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, input_to_cell_weights,
input_to_output_weights, recurrent_to_forget_weights,
recurrent_to_cell_weights, recurrent_to_output_weights);
}
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() != 1);
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, cell_bias, output_gate_bias);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(forget_gate_bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, cell_bias, output_gate_bias);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(1) != batch_size);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(cell_state_in, 1, DataType::QSYMM16);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(0) != output_size);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(1) != batch_size);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_in);
// Check whether peephole weights are all there or none
if (lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1,
DataType::QSYMM16);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() != 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(),
lstm_params.cell_to_output_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(),
lstm_params.cell_to_output_weights());
if (!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(),
lstm_params.cell_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(),
lstm_params.cell_to_input_weights());
}
}
const UniformQuantizationInfo qinput = input->quantization_info().uniform();
const UniformQuantizationInfo qcell_state_in = cell_state_in->quantization_info().uniform();
const UniformQuantizationInfo qoutput_state_in = output_state_in->quantization_info().uniform();
// Calculate and decompose effective scales for optimizing matmul calculation
const int32_t cell_shift = log2(qcell_state_in.scale);
ARM_COMPUTE_RETURN_ERROR_ON(cell_shift > -9);
// Calculate quantized parameters for clipping.
int16_t quantized_cell_clip = 0;
if (lstm_params.cell_clip() > 0.0f)
{
quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
}
// Precompute effective bias for optimizing the matmul computations.
const TensorInfo eff_bias_info(TensorShape(num_units), 1, DataType::S32);
const TensorInfo projection_eff_bias_info(TensorShape(output_size), 1, DataType::S32);
if (!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
lstm_params.input_to_input_weights(), &eff_bias_info,
GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
lstm_params.recurrent_to_input_weights(), &eff_bias_info,
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
}
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
input_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
recurrent_to_forget_weights, &eff_bias_info,
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
input_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
recurrent_to_cell_weights, &eff_bias_info,
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
input_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
recurrent_to_output_weights, &eff_bias_info,
GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
if (lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmLowpMatrixAReductionKernel::validate(
lstm_params.projection_weights(), &projection_eff_bias_info,
GEMMLowpReductionKernelInfo(output_size, false, lstm_params.hidden_state_zero(), true)));
if (lstm_params.projection_bias() != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.projection_bias(), 1, DataType::S32);
ARM_COMPUTE_RETURN_ON_ERROR(
NEArithmeticAddition::validate(lstm_params.projection_bias(), &projection_eff_bias_info,
&projection_eff_bias_info, ConvertPolicy::SATURATE));
}
}
const TensorInfo input_weights_transposed(TensorShape(num_units, input_size), 1, input_to_cell_weights->data_type(),
input_to_cell_weights->quantization_info());
const TensorInfo input_to_output_weights_transposed(TensorShape(num_units, input_size), 1,
input_to_output_weights->data_type(),
input_to_output_weights->quantization_info());
const TensorInfo recurrent_to_forget_weights_transposed(TensorShape(num_units, output_size), 1,
recurrent_to_forget_weights->data_type(),
recurrent_to_forget_weights->quantization_info());
const TensorInfo recurrent_to_cell_weights_transposed(TensorShape(num_units, output_size), 1,
recurrent_to_cell_weights->data_type(),
recurrent_to_cell_weights->quantization_info());
const TensorInfo recurrent_to_output_weights_transposed(TensorShape(num_units, output_size), 1,
recurrent_to_output_weights->data_type(),
recurrent_to_output_weights->quantization_info());
const TensorInfo recurrent_weights_transposed(TensorShape(num_units, output_size), 1,
recurrent_to_forget_weights->data_type(),
recurrent_to_forget_weights->quantization_info());
ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(input_to_cell_weights, &input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(NETranspose::validate(input_to_output_weights, &input_to_output_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(recurrent_to_forget_weights, &recurrent_to_forget_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(recurrent_to_cell_weights, &recurrent_to_cell_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(recurrent_to_output_weights, &recurrent_to_output_weights_transposed));
if (!lstm_params.has_cifg_opt())
{
const TensorInfo recurrent_to_input_weights_transposed(
TensorShape(num_units, output_size), 1, recurrent_to_forget_weights->data_type(),
lstm_params.recurrent_to_input_weights()->quantization_info());
const TensorInfo input_to_input_weights_transposed(TensorShape(num_units, input_size), 1,
lstm_params.input_to_input_weights()->data_type(),
lstm_params.input_to_input_weights()->quantization_info());
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(lstm_params.input_to_input_weights(), &input_to_input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(lstm_params.recurrent_to_input_weights(), &recurrent_to_input_weights_transposed));
}
if (lstm_params.has_projection())
{
const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1,
lstm_params.projection_weights()->data_type(),
lstm_params.projection_weights()->quantization_info());
ARM_COMPUTE_RETURN_ON_ERROR(
NETranspose::validate(lstm_params.projection_weights(), &projection_weights_transposed));
}
GEMMLowpOutputStageInfo gemmlowp_info;
gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
gemmlowp_info.output_data_type = DataType::QSYMM16;
const bool has_layer_norm = lstm_params.use_layer_norm();
// Forget gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.forget_intermediate_scale() == 0);
const TensorInfo forget_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
const float input_to_forget_scale = input_to_forget_weights->quantization_info().uniform().scale * qinput.scale /
lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info,
input_to_forget_scale, &mm_out_info, &forget_outstage_info));
const float recurrent_to_forget_scale = recurrent_to_forget_weights->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed,
&eff_bias_info, recurrent_to_forget_scale, &mm_out_info,
&forget_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info,
&forget_outstage_info, ConvertPolicy::SATURATE));
if (lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1,
DataType::QSYMM16);
ARM_COMPUTE_RETURN_ON_ERROR(
NEPixelWiseMultiplication::validate(cell_state_in, lstm_params.cell_to_forget_weights(), &mm_out_info, 1.f,
ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
const float cell_to_forget_scale = std::pow(2, cell_shift) *
lstm_params.cell_to_forget_weights()->quantization_info().uniform().scale /
lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(
cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(
NEGEMMLowpOutputStage::validate(&mm_out_info, nullptr, &forget_outstage_info, gemmlowp_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info,
&forget_outstage_info, ConvertPolicy::SATURATE));
}
if (has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.forget_layer_norm_weights();
const ITensorInfo *b_info = forget_gate_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(forget_outstage_info, *w_info, *b_info));
}
// Output quantization info of Sigmoid and Tanh activations
const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(&forget_outstage_info, &forget_gate_info,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Modulation gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_intermediate_scale() == 0);
const TensorInfo cell_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
const float input_to_cell_scale = input_to_cell_weights->quantization_info().uniform().scale * qinput.scale /
lstm_params.cell_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info,
input_to_cell_scale, &mm_out_info, &cell_outstage_info));
const float recurrent_to_cell_scale = recurrent_to_cell_weights->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed,
&eff_bias_info, recurrent_to_cell_scale, &mm_out_info,
&cell_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&cell_outstage_info, &cell_outstage_info,
&cell_outstage_info, ConvertPolicy::SATURATE));
if (has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.cell_layer_norm_weights();
const ITensorInfo *b_info = cell_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(cell_outstage_info, *w_info, *b_info));
}
const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(&cell_outstage_info, &cell_gate_info,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
// Input gate.
const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
if (lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lstm_params.input_gate_bias() != nullptr,
"Input gate bias must not be present when CIFG is used");
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticSubtraction::validate(&input_gate_info, &forget_gate_info,
&forget_gate_info, ConvertPolicy::SATURATE));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(),
lstm_params.recurrent_to_input_weights(), lstm_params.input_gate_bias());
// If the input_to_forget_weights data type is DataType::QSYMM8 then it can never match the other weights as they are all DataType::QASYMM8_SIGNED
if (input_to_forget_weights->data_type() == DataType::QSYMM8)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.input_to_input_weights(),
lstm_params.recurrent_to_input_weights());
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights,
lstm_params.input_to_input_weights(),
lstm_params.recurrent_to_input_weights());
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_forget_weights, lstm_params.input_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_forget_weights,
lstm_params.recurrent_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_intermediate_scale() == 0);
const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
const float input_to_input_scale = lstm_params.input_to_input_weights()->quantization_info().uniform().scale *
qinput.scale / lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info,
input_to_input_scale, &mm_out_info, &input_outstage_info));
const float recurrent_to_input_scale =
lstm_params.recurrent_to_input_weights()->quantization_info().uniform().scale * qoutput_state_in.scale /
lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed,
&eff_bias_info, recurrent_to_input_scale, &mm_out_info,
&input_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&input_outstage_info, &input_outstage_info,
&input_outstage_info, ConvertPolicy::SATURATE));
if (lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(
NEPixelWiseMultiplication::validate(cell_state_in, lstm_params.cell_to_input_weights(), &mm_out_info,
1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
const float cell_to_input_scale = std::pow(2, cell_shift) *
lstm_params.cell_to_input_weights()->quantization_info().uniform().scale /
lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(
cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(
NEGEMMLowpOutputStage::validate(&mm_out_info, &eff_bias_info, &input_outstage_info, gemmlowp_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&input_outstage_info, &input_outstage_info,
&input_outstage_info, ConvertPolicy::SATURATE));
}
if (has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.input_layer_norm_weights();
const ITensorInfo *b_info = lstm_params.input_gate_bias();
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(input_outstage_info, *w_info, *b_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(&input_outstage_info, &input_gate_info,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
}
// Cell.
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplication::validate(
&forget_gate_info, cell_state_in, &forget_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplication::validate(
&input_gate_info, cell_state_in, &cell_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(
NEArithmeticAddition::validate(&forget_gate_info, &cell_gate_info, cell_state_out, ConvertPolicy::SATURATE));
if (quantized_cell_clip > 0)
{
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(cell_state_out, nullptr,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
-quantized_cell_clip, quantized_cell_clip)));
}
// Output gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.output_intermediate_scale() == 0);
const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16,
QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
const float input_to_output_scale = input_to_output_weights->quantization_info().uniform().scale * qinput.scale /
lstm_params.output_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info,
input_to_output_scale, &mm_out_info, &output_outstage_info));
const float recurrent_to_output_scale = recurrent_to_output_weights->quantization_info().uniform().scale *
qoutput_state_in.scale / lstm_params.output_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed,
&eff_bias_info, recurrent_to_output_scale, &mm_out_info,
&output_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&output_outstage_info, &output_outstage_info,
&output_outstage_info, ConvertPolicy::SATURATE));
if (lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_output_weights(), 1,
DataType::QSYMM16);
// TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplication
// Here we are not using the output stage because all operations are done in float
// const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale();
// ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplication::validate(
cell_state_out, lstm_params.cell_to_output_weights(), &output_outstage_info, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&output_outstage_info, &output_outstage_info,
&output_outstage_info, ConvertPolicy::SATURATE));
}
if (has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.output_layer_norm_weights();
const ITensorInfo *b_info = output_gate_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(output_outstage_info, *w_info, *b_info));
}
const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(&output_outstage_info, &output_gate_info,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Hidden.
ARM_COMPUTE_RETURN_ON_ERROR(
NEActivationLayer::validate(cell_state_out, &input_gate_info,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
const TensorInfo hidden_mul_res(TensorShape(num_units, batch_size), 1, DataType::S32);
const TensorInfo hidden_out_info(TensorShape(num_units, batch_size), 1, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplication::validate(
&output_gate_info, &input_gate_info, &hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.hidden_state_scale() == 0);
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
ARM_COMPUTE_RETURN_ON_ERROR(
quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier,
&gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true));
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
gemmlowp_info.output_data_type = hidden_out_info.data_type();
ARM_COMPUTE_RETURN_ON_ERROR(
NEGEMMLowpOutputStage::validate(&hidden_mul_res, nullptr, &hidden_out_info, gemmlowp_info));
const bool projection_tensor_copy_required = num_units != output_size;
// Projection.
if (lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(recurrent_to_forget_weights,
lstm_params.projection_weights());
ARM_COMPUTE_RETURN_ERROR_ON(qoutput_state_in.scale == 0);
const UniformQuantizationInfo qprojection = lstm_params.projection_weights()->quantization_info().uniform();
const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(
projection_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int8_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int8_t>::max();
gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED;
const TensorInfo projection_outstage_info(*output_state_out);
const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1,
lstm_params.projection_weights()->data_type(),
lstm_params.projection_weights()->quantization_info());
TensorInfo projection_mm_out_info{mm_out_info};
projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size));
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, &hidden_out_info, &projection_weights_transposed,
&projection_eff_bias_info, projection_scale, &projection_mm_out_info,
&projection_outstage_info));
if (projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(
NEQLSTMLayer::TensorCopyKernel::validate(*output_state_in, projection_outstage_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(output_state_out, output_state_out, output_state_out,
ConvertPolicy::SATURATE));
if (projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(
NEQLSTMLayer::TensorCopyKernel::validate(projection_outstage_info, *output_state_out));
}
int8_t quantized_projection_clip{0};
if (lstm_params.projection_clip() > 0.0f)
{
quantized_projection_clip = quantize_qasymm8_signed(lstm_params.projection_clip(), qprojection);
}
if (quantized_projection_clip > 0)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(
output_state_out, nullptr,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
-quantized_projection_clip, quantized_projection_clip)));
}
}
else
{
if (projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEQLSTMLayer::TensorCopyKernel::validate(hidden_out_info, *output_state_out));
}
}
if (cell_state_out->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(cell_state_in, cell_state_out);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(cell_state_in, cell_state_out);
}
if (output_state_out->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_out);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output_state_in, output_state_out);
}
ARM_COMPUTE_RETURN_ON_ERROR(NECopy::validate(output_state_out, output));
return Status{};
}
void NEQLSTMLayer::run()
{
prepare();
// Acquire all the temporaries
MemoryGroupResourceScope scope_mg(_memory_group);
// Forget gate.
_mm_input_to_forget.run();
_input_to_forget_outstage.run();
_mm_recurrent_to_forget.run();
_recurrent_to_forget_outstage.run();
_accumulate_input_recurrent_forget.run();
if (_has_peephole)
{
_pixelwise_mul_cell_to_forget.run();
_cell_to_forget_outstage.run();
_accumulate_cell_forget.run();
}
if (_has_layer_norm)
{
NEScheduler::get().schedule(get_layer_norm(LayerNormGate::Forget).get(), Window::DimY);
}
_forget_gate_sigmoid.run();
// Modulation gate.
_mm_input_to_cell.run();
_input_to_cell_outstage.run();
_mm_recurrent_to_cell.run();
_recurrent_to_cell_outstage.run();
_accumulate_input_recurrent_modulation.run();
if (_has_layer_norm)
{
NEScheduler::get().schedule(get_layer_norm(LayerNormGate::Cell).get(), Window::DimY);
}
_cell_gate_tanh.run();
// Input gate
if (_has_cifg)
{
_input_gate_sub.run();
}
else
{
_mm_input_to_input.run();
_input_to_input_outstage.run();
_mm_recurrent_to_input.run();
_recurrent_to_input_outstage.run();
_accumulate_input_recurrent_input.run();
if (_has_peephole)
{
_pixelwise_mul_cell_to_input.run();
_cell_to_input_outstage.run();
_accumulate_cell_input.run();
}
if (_has_layer_norm)
{
NEScheduler::get().schedule(get_layer_norm(LayerNormGate::Input).get(), Window::DimY);
}
_input_gate_sigmoid.run();
}
// Cell.
_pixelwise_mul_forget_cell.run();
_pixelwise_mul_input_cell.run();
_add_forget_cell.run();
if (_has_cell_clipping)
{
_cell_clip.run();
}
// Output gate.
_mm_input_to_output.run();
_input_to_output_outstage.run();
_mm_recurrent_to_output.run();
_recurrent_to_output_outstage.run();
_accumulate_input_recurrent_output.run();
if (_has_peephole)
{
_pixelwise_mul_cell_to_output.run();
_cell_to_output_outstage.run();
_accumulate_cell_to_output.run();
}
if (_has_layer_norm)
{
NEScheduler::get().schedule(get_layer_norm(LayerNormGate::Output).get(), Window::DimY);
}
_output_gate_sigmoid.run();
// Hidden.
_hidden_tanh.run();
_pixelwise_mul_hidden.run();
_hidden_outstage.run();
// Projection.
if (_has_projection)
{
_mm_projection.run();
_projection_outstage.run();
if (_projection_tensor_copy_required)
{
_projection_output_to_accumulate_copy.run();
}
_accumulate_projection.run();
if (_projection_tensor_copy_required)
{
_projection_accumulate_to_output_copy.run();
}
if (_has_projection_clipping)
{
_projection_clip.run();
}
}
else
{
if (_projection_tensor_copy_required)
{
_hidden_to_output_copy.run();
}
}
// Copy output_state_out to output
_copy_output.run();
}
void NEQLSTMLayer::prepare()
{
if (!_is_prepared)
{
if (_convert_input_to_forget_weights_to_qsymm8)
{
_input_to_forget_weights_f32.allocator()->allocate();
_input_to_forget_weights_symm8.allocator()->allocate();
_dequantize_input_to_forget_weights.run();
_quantize_input_to_forget_weights.run();
}
// Pre-transpose weights to be used in GEMM.
_input_to_forget_weights_transposed.allocator()->allocate();
_input_to_cell_weights_transposed.allocator()->allocate();
_input_to_output_weights_transposed.allocator()->allocate();
_recurrent_to_forget_weights_transposed.allocator()->allocate();
_recurrent_to_cell_weights_transposed.allocator()->allocate();
_recurrent_to_output_weights_transposed.allocator()->allocate();
_transpose_input_to_forget_weights.run();
_transpose_input_to_cell_weights.run();
_transpose_input_to_output_weights.run();
_transpose_recurrent_to_forget_weights.run();
_transpose_recurrent_to_cell_weights.run();
_transpose_recurrent_to_output_weights.run();
// Precompute effective biases
if (_has_cifg)
{
std::fill_n(reinterpret_cast<int16_t *>(_ones.buffer()),
_ones.info()->total_size() / _ones.info()->element_size(), 32767);
}
else
{
_input_to_input_eff_bias.allocator()->allocate();
_recurrent_to_input_eff_bias.allocator()->allocate();
ITensorPack packII = {{TensorType::ACL_SRC, _input_to_input_weights},
{TensorType::ACL_DST, &_input_to_input_eff_bias}};
NEScheduler::get().schedule_op(_input_to_input_reduction.get(), Window::DimY,
_input_to_input_reduction->window(), packII);
ITensorPack packRI = {{TensorType::ACL_SRC, _recurrent_to_input_weights},
{TensorType::ACL_DST, &_recurrent_to_input_eff_bias}};
NEScheduler::get().schedule_op(_recurrent_to_input_reduction.get(), Window::DimY,
_recurrent_to_input_reduction->window(), packRI);
_input_to_input_weights_transposed.allocator()->allocate();
_recurrent_to_input_weights_transposed.allocator()->allocate();
_transpose_input_to_input_weights.run();
_transpose_recurrent_to_input_weights.run();
_input_to_input_weights->mark_as_unused();
_recurrent_to_input_weights->mark_as_unused();
}
_input_to_forget_eff_bias.allocator()->allocate();
_recurrent_to_forget_eff_bias.allocator()->allocate();
_input_to_cell_eff_bias.allocator()->allocate();
_recurrent_to_cell_eff_bias.allocator()->allocate();
_input_to_output_eff_bias.allocator()->allocate();
_recurrent_to_output_eff_bias.allocator()->allocate();
ITensorPack packIF = {{TensorType::ACL_SRC, _input_to_forget_weights},
{TensorType::ACL_DST, &_input_to_forget_eff_bias}};
NEScheduler::get().schedule_op(_input_to_forget_reduction.get(), Window::DimY,
_input_to_forget_reduction->window(), packIF);
ITensorPack packRF = {{TensorType::ACL_SRC, _recurrent_to_forget_weights},
{TensorType::ACL_DST, &_recurrent_to_forget_eff_bias}};
NEScheduler::get().schedule_op(_recurrent_to_forget_reduction.get(), Window::DimY,
_recurrent_to_forget_reduction->window(), packRF);
ITensorPack packIC = {{TensorType::ACL_SRC, _input_to_cell_weights},
{TensorType::ACL_DST, &_input_to_cell_eff_bias}};
NEScheduler::get().schedule_op(_input_to_cell_reduction.get(), Window::DimY, _input_to_cell_reduction->window(),
packIC);
ITensorPack packRC = {{TensorType::ACL_SRC, _recurrent_to_cell_weights},
{TensorType::ACL_DST, &_recurrent_to_cell_eff_bias}};
NEScheduler::get().schedule_op(_recurrent_to_cell_reduction.get(), Window::DimY,
_recurrent_to_cell_reduction->window(), packRC);
ITensorPack packIO = {{TensorType::ACL_SRC, _input_to_output_weights},
{TensorType::ACL_DST, &_input_to_output_eff_bias}};
NEScheduler::get().schedule_op(_input_to_output_reduction.get(), Window::DimY,
_input_to_output_reduction->window(), packIO);
ITensorPack packRO = {{TensorType::ACL_SRC, _recurrent_to_output_weights},
{TensorType::ACL_DST, &_recurrent_to_output_eff_bias}};
NEScheduler::get().schedule_op(_recurrent_to_output_reduction.get(), Window::DimY,
_recurrent_to_output_reduction->window(), packRO);
if (_has_projection)
{
_projection_eff_bias.allocator()->allocate();
ITensorPack pack = {{TensorType::ACL_SRC, _projection_weights},
{TensorType::ACL_DST, &_projection_eff_bias}};
NEScheduler::get().schedule_op(_projection_reduction.get(), Window::DimY, _projection_reduction->window(),
pack);
if (_projection_bias != nullptr)
{
_projection_bias_add.run();
_projection_bias->mark_as_unused();
}
_projection_weights_transposed.allocator()->allocate();
_transpose_projection_weights.run();
_projection_weights->mark_as_unused();
if (!_projection_tensor_copy_required)
{
_hidden_gate.mark_as_unused();
_projection_accumulate_res.mark_as_unused();
}
}
// Mark weights as unused
_input_to_forget_weights->mark_as_unused();
_input_to_cell_weights->mark_as_unused();
_input_to_output_weights->mark_as_unused();
_recurrent_to_forget_weights->mark_as_unused();
_recurrent_to_cell_weights->mark_as_unused();
_recurrent_to_output_weights->mark_as_unused();
_is_prepared = true;
}
}
} // namespace arm_compute