blob: ce0849bf7abc59475eafae317a268a4b4ab26b50 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(FIXED_POINT_POSITION)
#include "fixed_point.h"
#endif // FIXED_POINT_POSITION
/** This kernel reshapes the tensor's low three dimensions to single column
*
* @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] bias_ptr Pointer to the bias tensor. Same as @p src_ptr
* @param[in] bias_stride_x Stride of the bias tensor in X dimension (in bytes)
* @param[in] bias_step_x bias_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bias_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] width The width of the input tensor
* @param[in] height The height of the input tensor
* @param[in] depth The depth of the input tensor
* @param[in] total_filters Total number of filters. 4th dimension of the weights matrix
*/
__kernel void reshape_to_columns(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst),
#ifdef HAS_BIAS
VECTOR_DECLARATION(bias),
#endif /* HAS_BIAS */
uint width, uint height, uint depth, uint total_filters)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
bool is_last_thread = (get_global_id(0) == (get_global_size(0) - 1) && get_global_id(1) == (get_global_size(1) - 1) && get_global_id(2) == (get_global_size(2) - 1));
__global uchar *tmp_src_ptr = src.ptr;
__global uchar *tmp_dst_ptr = dst_ptr + dst_offset_first_element_in_bytes + get_global_id(0) * dst_stride_y + get_global_id(1) * width * dst_stride_y + get_global_id(
2) * width * height * dst_stride_y;
#ifdef HAS_BIAS
__global uchar *tmp_bias_ptr = bias_ptr + bias_offset_first_element_in_bytes;
#endif /* HAS_BIAS */
if(is_last_thread)
{
for(uint i = 0; i < total_filters; ++i)
{
*((__global DATA_TYPE *)tmp_dst_ptr) = *((__global DATA_TYPE *)tmp_src_ptr);
#ifdef HAS_BIAS
*((__global DATA_TYPE *)(tmp_dst_ptr + dst_stride_y)) = *((__global DATA_TYPE *)(tmp_bias_ptr));
tmp_bias_ptr += bias_stride_x;
#endif /* HAS_BIAS */
tmp_src_ptr += depth * src_stride_z;
tmp_dst_ptr += dst_stride_x;
}
}
else
{
for(uint i = 0; i < total_filters; ++i)
{
*((__global DATA_TYPE *)tmp_dst_ptr) = *((__global DATA_TYPE *)tmp_src_ptr);
tmp_src_ptr += depth * src_stride_z;
tmp_dst_ptr += dst_stride_x;
}
}
}
#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
*/
__kernel void im2col_generic(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst),
uint src_stride_w,
uint dst_stride_w)
{
const int xc = get_global_id(0); // x coordinate in the convolved tensor
const int yc = get_global_id(1); // y coordinate in the convolved tensor
const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
// Calculate input indices
const int xi = xc * STRIDE_X - PAD_LEFT;
const int yi = yc * STRIDE_Y - PAD_TOP;
// Calculate output indices
const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
__global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
// Linearize convolution elements
for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
{
for(int x = xi, x_e = xi + KERNEL_WIDTH; x < x_e; ++x, ++output_ptr)
{
#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
*output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
#else // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
{
#if defined(OFFSET)
*output_ptr = OFFSET;
#else /* OFFSET */
*output_ptr = 0;
#endif /* OFFSET */
}
else
{
*output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
}
#endif // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
}
}
#ifdef HAS_BIAS
if(ch == (KERNEL_DEPTH - 1))
{
#ifdef FIXED_POINT_POSITION
*output_ptr = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
#else // FIXED_POINT_POSITION
*output_ptr = 1.0f;
#endif // FIXED_POINT_POSITION
}
#endif // HAS_BIAS
}
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 3x3 and pad_x = pad_y = 0
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
*/
__kernel void im2col_kernel3x3_padx0_pady0(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst),
uint src_stride_w,
uint dst_stride_w)
{
const int xc = get_global_id(0); // x coordinate in the convolved tensor
const int yc = get_global_id(1); // y coordinate in the convolved tensor
const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
// Calculate input indices
const int xi = xc * STRIDE_X;
const int yi = yc * STRIDE_Y;
// Calculate output indices
const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
// Get input and output address
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
__global DATA_TYPE *output_ptr = (__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w) + xo;
VEC_DATA_TYPE(DATA_TYPE, 3)
row0 = vload3(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 3)
row1 = vload3(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 3)
row2 = vload3(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, output_ptr);
*(output_ptr + 8) = row2.s2;
#ifdef HAS_BIAS
if(ch == (KERNEL_DEPTH - 1))
{
#ifdef FIXED_POINT_POSITION
*(output_ptr + 9) = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
#else // FIXED_POINT_POSITION
*(output_ptr + 9) = 1.0f;
#endif // FIXED_POINT_POSITION
}
#endif // HAS_BIAS
}
#endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
#if defined(WIDTH_OUTPUT)
/** This kernel performs a reshaping of the output of the convolution layer.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
*/
__kernel void col2im(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
uint dst_stride_w)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(dst);
// Compute output offset
int idx = get_global_id(0) * dst.stride_z + (get_global_id(1) / WIDTH_OUTPUT) * dst_stride_y + (get_global_id(1) % WIDTH_OUTPUT) * dst_stride_x + get_global_id(2) * dst_stride_w;
// Store value
*((__global DATA_TYPE *)(dst.ptr + idx)) = *((__global DATA_TYPE *)(src.ptr));
}
#endif // defined(WIDTH_OUTPUT)
/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
*
* @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
* @note In case biases will be added in late stage, -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] width The width of the input tensor
* @param[in] height The height of the input tensor
*/
__kernel void im2col_reduced(
TENSOR3D_DECLARATION(src),
VECTOR_DECLARATION(dst),
uint width, uint height)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
const uint image_size = width * height;
__global uchar *tmp_out_ptr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) + get_global_id(1) * width + get_global_id(2) * image_size) * dst_stride_x;
*((__global DATA_TYPE *)tmp_out_ptr) = *((__global DATA_TYPE *)src.ptr);
#ifdef HAS_BIAS
// If it is the last thread in the 3 dimensional workgroup
if(get_global_id(0) == (get_global_size(0) - 1) && get_global_id(1) == (get_global_size(1) - 1) && get_global_id(2) == (get_global_size(2) - 1))
{
tmp_out_ptr += dst_stride_x;
#ifdef FIXED_POINT_POSITION
*((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
#else // FIXED_POINT_POSITION
*((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)1;
#endif // FIXED_POINT_POSITION
}
#endif // HAS_BIAS
}
#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
/** This kernel reshapes the input tensor to a tensor used to perform convolution using GEMM when
* the kernel width is greater than 1 (except when the kernel size is 3x3) and pad_x == pad_y == 0.
*
* @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float.
* @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=4.
* @note The width modulo vector size must be passed at compile time using -DWIDTH_MOD_VECTOR_SIZE e.g. -DWIDTH_MOD_VECTOR_SIZE=3.
* @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
*/
__kernel void im2col_generic_padx0_pady0(
TENSOR3D_DECLARATION(src),
IMAGE_DECLARATION(dst),
uint src_stride_w,
uint dst_stride_w)
{
const int xc = get_global_id(0); // x coordinate in the convolved tensor
const int yc = get_global_id(1); // y coordinate in the convolved tensor
const int ch = get_global_id(2) % KERNEL_DEPTH; // input feature map
const int batch = get_global_id(2) / KERNEL_DEPTH; // batch size
// Calculate input indices
const int xi = xc * STRIDE_X;
const int yi = yc * STRIDE_Y;
// Calculate output indices
const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
__global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
__global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
// Linearize convolution elements
for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
{
int last_x = 0;
for(int x = xi, x_e = xi + KERNEL_WIDTH; x + VECTOR_SIZE <= x_e; x += VECTOR_SIZE, output_ptr += VECTOR_SIZE)
{
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
row = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
VSTORE(VECTOR_SIZE)
(row, 0, output_ptr);
last_x = x;
}
// Copy the remainder of the row by doing VLOAD(WIDTH_MOD_VECTOR_SIZE) and VSTORE(WIDTH_MOD_VECTOR_SIZE).
// Note that x and output_ptr have already been incremented by VECTOR_SIZE by the loop just before exit.
#if WIDTH_MOD_VECTOR_SIZE == 1
*output_ptr = *((__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
#elif WIDTH_MOD_VECTOR_SIZE > 1
VEC_DATA_TYPE(DATA_TYPE, WIDTH_MOD_VECTOR_SIZE)
row = VLOAD(WIDTH_MOD_VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
VSTORE(WIDTH_MOD_VECTOR_SIZE)
(row, 0, output_ptr);
#endif /* WIDTH_MOD_VECTOR_SIZE */
output_ptr += WIDTH_MOD_VECTOR_SIZE;
} /* End of loop over KERNEL_HEIGHT */
#ifdef HAS_BIAS
if(ch == (KERNEL_DEPTH - 1))
{
#ifdef FIXED_POINT_POSITION
*output_ptr = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
#else // FIXED_POINT_POSITION
*output_ptr = 1.0f;
#endif // FIXED_POINT_POSITION
}
#endif // HAS_BIAS
}
#endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)