blob: 8973d0b273be8d35cf99d4a9b0cfb0afdf0d3d40 [file] [log] [blame]
/*
* Copyright (c) 2020-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cmath>
#include <limits>
#if defined(__ARM_FEATURE_SVE) && defined(ARM_COMPUTE_ENABLE_SVE)
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif // M_PI
namespace arm_compute
{
inline svfloat32_t svtaylor_poly_f32_z(svbool_t pg, svfloat32_t x, svfloat32_t coeff_1, svfloat32_t coeff_2, svfloat32_t coeff_3,
svfloat32_t coeff_4, svfloat32_t coeff_5, svfloat32_t coeff_6, svfloat32_t coeff_7, svfloat32_t coeff_8)
{
const auto A = svmla_f32_z(pg, coeff_1, coeff_5, x);
const auto B = svmla_f32_z(pg, coeff_3, coeff_7, x);
const auto C = svmla_f32_z(pg, coeff_2, coeff_6, x);
const auto D = svmla_f32_z(pg, coeff_4, coeff_8, x);
const auto x2 = svmul_f32_z(pg, x, x);
const auto x4 = svmul_f32_z(pg, x2, x2);
const auto res = svmla_f32_z(pg, svmla_f32_z(pg, A, B, x2), svmla_f32_z(pg, C, D, x2), x4);
return res;
}
inline svfloat16_t svtaylor_poly_f16_z(svbool_t pg, svfloat16_t x, svfloat16_t coeff_1, svfloat16_t coeff_2, svfloat16_t coeff_3,
svfloat16_t coeff_4, svfloat16_t coeff_5, svfloat16_t coeff_6, svfloat16_t coeff_7, svfloat16_t coeff_8)
{
const auto A = svmla_f16_z(pg, coeff_1, coeff_5, x);
const auto B = svmla_f16_z(pg, coeff_3, coeff_7, x);
const auto C = svmla_f16_z(pg, coeff_2, coeff_6, x);
const auto D = svmla_f16_z(pg, coeff_4, coeff_8, x);
const auto x2 = svmul_f16_z(pg, x, x);
const auto x4 = svmul_f16_z(pg, x2, x2);
const auto res = svmla_f16_z(pg, svmla_f16_z(pg, A, B, x2), svmla_f16_z(pg, C, D, x2), x4);
return res;
}
inline svfloat16_t svinv_f16_z(svbool_t pg, svfloat16_t x)
{
auto recip = svrecpe_f16(x);
recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip);
recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip);
return recip;
}
inline svfloat32_t svinv_f32_z(svbool_t pg, svfloat32_t x)
{
auto recip = svrecpe_f32(x);
recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip);
recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip);
return recip;
}
static const uint32_t svexp_f32_coeff[] = {
0x3f7ffff6, // x^1: 0x1.ffffecp-1f
0x3efffedb, // x^2: 0x1.fffdb6p-2f
0x3e2aaf33, // x^3: 0x1.555e66p-3f
0x3d2b9f17, // x^4: 0x1.573e2ep-5f
0x3c072010, // x^5: 0x1.0e4020p-7f
};
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x)
{
const auto c1 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[0]));
const auto c2 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[1]));
const auto c3 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[2]));
const auto c4 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[3]));
const auto c5 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[4]));
const auto shift = svreinterpret_f32_u32(svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
const auto inv_ln2 = svreinterpret_f32_u32(svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
const auto zero = svdup_n_f32(0.f);
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
// Range reduction:
// e^x = 2^n * e^r
// where:
// n = floor(x / ln(2))
// r = x - n * ln(2)
//
// By adding x / ln(2) with 2^23 + 127 (shift):
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
// the whole fraction part of z in FP32 format.
// Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
// (i.e. n) because the decimal part has been pushed out and lost.
// * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
const auto n = svsub_f32_z(pg, z, shift);
const auto scale = svreinterpret_f32_u32(svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
// This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
// Compute the truncated Taylor series of e^r.
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
const auto r2 = svmul_f32_z(pg, r, r);
const auto p1 = svmul_f32_z(pg, c1, r);
const auto p23 = svmla_f32_z(pg, c2, c3, r);
const auto p45 = svmla_f32_z(pg, c4, c5, r);
const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
auto poly = svmla_f32_z(pg, scale, p12345, scale);
// Handle underflow and overflow.
poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
return poly;
}
inline svfloat16_t svexp_f16_z(svbool_t pg, svfloat16_t x)
{
auto bottom = svcvt_f32_z(pg, x);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
auto top = svcvtlt_f32_x(pg, x);
auto pg_top = pg;
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
auto pg_top = svptrue_b16();
auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(x))));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
bottom = svexp_f32_z(pg, bottom);
top = svexp_f32_z(pg_top, top);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top);
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
}
inline svfloat32_t svtanh_f32_z(svbool_t pg, svfloat32_t val)
{
const svfloat32_t CONST_1 = svdup_n_f32(1.f);
const svfloat32_t CONST_2 = svdup_n_f32(2.f);
const svfloat32_t CONST_MIN_TANH = svdup_n_f32(-10.f);
const svfloat32_t CONST_MAX_TANH = svdup_n_f32(10.f);
svfloat32_t x = svmin_f32_z(pg, svmax_f32_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH);
svfloat32_t exp2x = svexp_f32_z(pg, svmul_f32_z(pg, CONST_2, x));
svfloat32_t num = svsub_f32_z(pg, exp2x, CONST_1);
svfloat32_t den = svadd_f32_z(pg, exp2x, CONST_1);
svfloat32_t tanh = svdiv_f32_z(pg, num, den);
return tanh;
}
inline svfloat16_t svtanh_f16_z(svbool_t pg, svfloat16_t val)
{
const svfloat16_t CONST_1 = svdup_n_f16(1.f);
const svfloat16_t CONST_2 = svdup_n_f16(2.f);
const svfloat16_t CONST_MIN_TANH = svdup_n_f16(-10.f);
const svfloat16_t CONST_MAX_TANH = svdup_n_f16(10.f);
const svfloat16_t x = svmin_f16_z(pg, svmax_f16_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH);
const svfloat16_t exp2x = svexp_f16_z(pg, svmul_f16_z(pg, CONST_2, x));
const svfloat16_t num = svsub_f16_z(pg, exp2x, CONST_1);
const svfloat16_t den = svadd_f16_z(pg, exp2x, CONST_1);
const svfloat16_t tanh = svdiv_f16_z(pg, num, den);
return tanh;
}
inline svfloat32_t svlog_f32_z(svbool_t pg, svfloat32_t x)
{
/** Logarithm polynomial coefficients */
const svfloat32_t log_tab_1 = svdup_n_f32(-2.29561495781f);
const svfloat32_t log_tab_2 = svdup_n_f32(-2.47071170807f);
const svfloat32_t log_tab_3 = svdup_n_f32(-5.68692588806f);
const svfloat32_t log_tab_4 = svdup_n_f32(-0.165253549814f);
const svfloat32_t log_tab_5 = svdup_n_f32(5.17591238022f);
const svfloat32_t log_tab_6 = svdup_n_f32(0.844007015228f);
const svfloat32_t log_tab_7 = svdup_n_f32(4.58445882797f);
const svfloat32_t log_tab_8 = svdup_n_f32(0.0141278216615f);
const auto CONST_127 = svdup_n_s32(127); // 127
const auto CONST_LN2 = svdup_n_f32(0.6931471805f); // ln(2)
// Extract exponent
auto m = svsub_s32_z(pg, svasr_n_s32_z(pg, svreinterpret_s32_f32(x), 23), CONST_127);
auto val = svreinterpret_f32_s32(svsub_s32_z(pg, svreinterpret_s32_f32(x), svlsl_n_s32_z(pg, m, 23)));
// Polynomial Approximation
auto poly = svtaylor_poly_f32_z(pg, val, log_tab_1, log_tab_2, log_tab_3, log_tab_4, log_tab_5, log_tab_6, log_tab_7, log_tab_8);
// Reconstruct
poly = svmla_f32_z(pg, poly, svcvt_f32_s32_z(pg, m), CONST_LN2);
return poly;
}
inline svfloat16_t svlog_f16_z(svbool_t pg, svfloat16_t x)
{
auto bottom = svcvt_f32_z(pg, x);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
auto top = svcvtlt_f32_x(pg, x);
auto pg_top = pg;
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
auto pg_top = svptrue_b16();
auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(x))));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
bottom = svlog_f32_z(pg, bottom);
top = svlog_f32_z(pg_top, top);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top);
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
}
inline svfloat32_t svsin_f32_z(svbool_t pg, svfloat32_t val)
{
using ScalarType = float;
using IntType = uint32_t;
constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3)
constexpr float te_sin_coeff3 = 0.05f; // 1/(4*5)
constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7)
constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)
const auto pi_v = wrapper::svdup_n(ScalarType(M_PI));
const auto pio2_v = wrapper::svdup_n(ScalarType(M_PI / 2));
const auto ipi_v = wrapper::svdup_n(ScalarType(1 / M_PI));
//Find positive or negative
const auto c_v = svabs_z(pg, wrapper::svcvt_z<int32_t>(pg, svmul_z(pg, val, ipi_v)));
const auto sign_v = svcmple(pg, val, wrapper::svdup_n(ScalarType(0)));
const auto odd_v = svcmpne(pg, svand_z(pg, wrapper::svreinterpret<IntType>(c_v), wrapper::svdup_n(IntType(1))), wrapper::svdup_n(IntType(0)));
auto neg_v = sveor_z(pg, odd_v, sign_v);
//Modulus a - (n * int(a*(1/n)))
auto ma = svsub_z(pg, svabs_z(pg, val), svmul_z(pg, pi_v, wrapper::svcvt_z<ScalarType>(pg, c_v)));
const auto reb_v = svcmpge(pg, ma, pio2_v);
//Rebase a between 0 and pi/2
ma = svsel(reb_v, svsub_z(pg, pi_v, ma), ma);
//Taylor series
const auto ma2 = svmul_z(pg, ma, ma);
//2nd elem: x^3 / 3!
auto elem = svmul_z(pg, svmul_z(pg, ma, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff2)));
auto res = svsub_z(pg, ma, elem);
//3rd elem: x^5 / 5!
elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff3)));
res = svadd_z(pg, res, elem);
//4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff4)));
res = svsub_z(pg, res, elem);
//5th elem: x^9 / 9!
elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff5)));
res = svadd_z(pg, res, elem);
//Change of sign
res = svneg_m(res, neg_v, res);
return res;
}
inline svfloat16_t svsin_f16_z(svbool_t pg, svfloat16_t val)
{
auto bottom = svcvt_f32_z(pg, val);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
auto top = svcvtlt_f32_x(pg, val);
auto pg_top = pg;
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
auto pg_top = svptrue_b16();
auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(val))));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
bottom = svsin_f32_z(pg, bottom);
top = svsin_f32_z(pg_top, top);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top);
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
}
inline svfloat32_t svpow_f32_z(svbool_t pg, svfloat32_t a, svfloat32_t b)
{
return svexp_f32_z(pg, svmul_z(pg, b, svlog_f32_z(pg, a)));
}
inline svfloat16_t svpow_f16_z(svbool_t pg, svfloat16_t a, svfloat16_t b)
{
auto a_bottom = svcvt_f32_z(pg, a);
auto b_bottom = svcvt_f32_z(pg, b);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
auto pg_top = pg;
auto a_top = svcvtlt_f32_x(pg, a);
auto b_top = svcvtlt_f32_x(pg, b);
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
auto pg_top = svptrue_b16();
auto a_top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(a))));
auto b_top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(b))));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
auto res_bottom = svpow_f32_z(pg, a_bottom, b_bottom);
auto res_top = svpow_f32_z(pg_top, a_top, b_top);
#if defined(ARM_COMPUTE_ENABLE_SVE2)
return svcvtnt_f16_m(svcvt_f16_z(pg, res_bottom), pg_top, res_top);
#else /* defined(ARM_COMPUTE_ENABLE_SVE2) */
return svtrn1(svcvt_f16_z(pg, res_bottom), svcvt_f16_z(pg_top, res_top));
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
}
#if defined(ARM_COMPUTE_ENABLE_SVE2)
template <>
inline svuint8_t convert_float_to_int<svuint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
{
svuint8_t out;
const auto all_true_pg = svptrue_b32();
auto tmp_0 = svcvt_u32_f32_z(all_true_pg, in_0);
auto tmp_1 = svcvt_u32_f32_z(all_true_pg, in_1);
auto tmp_2 = svcvt_u32_f32_z(all_true_pg, in_2);
auto tmp_3 = svcvt_u32_f32_z(all_true_pg, in_3);
auto tmp_16_0 = svqxtnt_u32(svqxtnb_u32(tmp_0), tmp_1);
auto tmp_16_1 = svqxtnt_u32(svqxtnb_u32(tmp_2), tmp_3);
auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
out = svqxtnt_u16(svqxtnb_u16(tmp_16_0), tmp_16_1);
auto out_uzp_0 = svuzp1(out, out);
auto out_uzp_1 = svuzp2(out, out);
pg = svwhilelt_b8_s32(0, svcntb() / 2);
out = svsplice(pg, out_uzp_0, out_uzp_1);
return out;
}
template <>
inline svint8_t convert_float_to_int<svint8_t>(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3)
{
svint8_t out;
const auto all_true_pg = svptrue_b32();
auto tmp_0 = svcvt_s32_f32_z(all_true_pg, in_0);
auto tmp_1 = svcvt_s32_f32_z(all_true_pg, in_1);
auto tmp_2 = svcvt_s32_f32_z(all_true_pg, in_2);
auto tmp_3 = svcvt_s32_f32_z(all_true_pg, in_3);
auto tmp_16_0 = svqxtnt_s32(svqxtnb_s32(tmp_0), tmp_1);
auto tmp_16_1 = svqxtnt_s32(svqxtnb_s32(tmp_2), tmp_3);
auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0);
auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0);
auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1);
auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1);
auto pg = svwhilelt_b16_s32(0, svcnth() / 2);
tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1);
tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3);
out = svqxtnt_s16(svqxtnb_s16(tmp_16_0), tmp_16_1);
auto out_uzp_0 = svuzp1(out, out);
auto out_uzp_1 = svuzp2(out, out);
pg = svwhilelt_b8_s32(0, svcntb() / 2);
out = svsplice(pg, out_uzp_0, out_uzp_1);
return out;
}
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
} // namespace arm_compute
#endif /* defined(ARM_COMPUTE_ENABLE_SVE) */