blob: 65a3363e2454da51501c22aebfa71551ddd4155a [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/MatMulAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuMatMul.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"
#include "tests/CL/CLAccessor.h"
#include "tests/framework/Fixture.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"
#include "tests/validation/Validation.h"
using namespace arm_compute::experimental::dynamic_fusion;
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
template <typename U>
void fill(U &&tensor, int i)
{
switch (tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{-1.0f, 1.0f};
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
} // namespace
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionGpuMatMulValidationGenericFixture : public framework::Fixture
{
public:
void setup(TensorShape lhs_shape,
TensorShape rhs_shape,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
int M0,
int N0,
int K0,
bool export_rhs_to_cl_image,
DataType data_type)
{
//For brevity, the input shapes are assumed to be not-transposed for both a and b matrices.
if (transpose_a)
{
permute(lhs_shape, PermutationVector(1U, 0U));
}
if (transpose_b)
{
permute(rhs_shape, PermutationVector(1U, 0U));
}
// Skip configurations unsupported by the device.
_device_supports_export_to_cl_image = image2d_from_buffer_supported(CLKernelLibrary::get().get_device());
if (!_device_supports_export_to_cl_image && export_rhs_to_cl_image)
{
ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
framework::ARM_COMPUTE_PRINT_INFO();
return; // Note: Also need to skip the validate in corresponding FIXTURE_DATA_TEST_CASEs.
}
_target = compute_target(lhs_shape, rhs_shape, transpose_a, transpose_b, M0, N0, K0, export_rhs_to_cl_image,
data_type);
_reference = compute_reference(lhs_shape, rhs_shape, output_shape, transpose_a, transpose_b, data_type);
}
protected:
TensorType compute_target(TensorShape &shape_a,
TensorShape &shape_b,
bool transpose_a,
bool transpose_b,
int M0,
int N0,
int K0,
bool export_rhs_to_cl_image,
DataType data_type)
{
ARM_COMPUTE_UNUSED(export_rhs_to_cl_image);
CLScheduler::get().default_reinit();
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto context = GpuWorkloadContext{&cl_compile_ctx};
GpuWorkloadSketch sketch{&context};
// Create sketch tensors
ITensorInfo *lhs_info = context.create_tensor_info(TensorInfo(shape_a, 1, data_type));
ITensorInfo *rhs_info = context.create_tensor_info(TensorInfo(shape_b, 1, data_type));
ITensorInfo *dst_info = context.create_tensor_info();
MatMulAttributes matmul_attr{};
matmul_attr.adj_lhs(transpose_a);
matmul_attr.adj_rhs(transpose_b);
GpuMatMulSettings matmul_settings{};
matmul_settings.m0(M0);
matmul_settings.n0(N0);
matmul_settings.k0(K0);
ITensorInfo *ans_info = FunctionType::create_op(sketch, lhs_info, rhs_info, matmul_attr, matmul_settings);
GpuOutput::create_op(sketch, ans_info, dst_info);
// Configure runtime
ClWorkloadRuntime runtime;
runtime.configure(sketch);
for (auto &data : runtime.get_auxiliary_tensors())
{
CLTensor *tensor = std::get<0>(data);
TensorInfo info = std::get<1>(data);
AuxMemoryInfo aux_mem_req = std::get<2>(data);
tensor->allocator()->init(info, aux_mem_req.alignment);
tensor->allocator()->allocate(); // Use ACL allocated memory
}
// Construct user tensors
TensorType t_lhs{};
TensorType t_rhs{};
TensorType t_dst{};
// Initialize user tensors
t_lhs.allocator()->init(*lhs_info);
t_rhs.allocator()->init(*rhs_info);
t_dst.allocator()->init(*dst_info);
ARM_COMPUTE_ASSERT(t_lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(t_rhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(t_dst.info()->is_resizable());
// Allocate and fill user tensors
t_lhs.allocator()->allocate();
t_rhs.allocator()->allocate();
t_dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!t_lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(!t_rhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(!t_dst.info()->is_resizable());
fill(AccessorType(t_lhs), 0);
fill(AccessorType(t_rhs), 1);
// Run runtime
runtime.run({&t_lhs, &t_rhs, &t_dst});
return t_dst;
}
SimpleTensor<T> compute_reference(const TensorShape &shape_a,
const TensorShape &shape_b,
const TensorShape &output_shape,
bool pretranspose_a,
bool pretranspose_b,
DataType data_type)
{
// We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D
// This is necessary unless we choose to extend gemm reference for 5D+ tensors
TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
TensorShape shape_a_collapsed = shape_a.collapsed_from(Window::DimZ);
TensorShape shape_b_collapsed = shape_b.collapsed_from(Window::DimZ);
// Create reference
SimpleTensor<T> a{shape_a_collapsed, data_type, 1};
SimpleTensor<T> b{shape_b_collapsed, data_type, 1};
SimpleTensor<T> c{output_shape_collapsed, data_type, 1};
// Fill reference
fill(a, 0);
fill(b, 1);
/* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
in order to be able to call reference implementation that works with (B x M x K) input.
Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
// Define transposed shapes
TensorShape a_transposed_shape(a.shape());
a_transposed_shape.set(0, a.shape().y());
a_transposed_shape.set(1, a.shape().x());
TensorShape b_transposed_shape(b.shape());
b_transposed_shape.set(0, b.shape().y());
b_transposed_shape.set(1, b.shape().x());
// Define transposed tensors
SimpleTensor<T> a_transposed{a_transposed_shape, data_type};
SimpleTensor<T> b_transposed{b_transposed_shape, data_type};
//pretranspose a if necessary
if (pretranspose_a)
{
a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
}
// pretranspose b if necessary
if (pretranspose_b)
{
b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
}
// Use transposed tensors if boolean enabled else use original tensors
SimpleTensor<T> result =
reference::gemm<T>((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c, 1.0f, 0.f);
// We reshape the gemm output back if the tensor is high dimensional
if (output_shape_collapsed != output_shape)
{
// std::cout << "called reshape: \n";
result = reference::reshape_layer(result, output_shape);
}
return result;
}
CLTensor _target{};
SimpleTensor<T> _reference{};
bool _device_supports_export_to_cl_image{false};
bool _device_supports_mmul{false};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionGpuMatMulValidationFixture
: public DynamicFusionGpuMatMulValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape lhs_shape,
TensorShape rhs_shape,
TensorShape output_shape,
bool transpose_a,
bool transpose_b,
int M0,
int N0,
int K0,
bool export_rhs_to_cl_image,
DataType data_type)
{
ARM_COMPUTE_UNUSED(export_rhs_to_cl_image);
DynamicFusionGpuMatMulValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(
lhs_shape, rhs_shape, output_shape, transpose_a, transpose_b, M0, N0, K0,
false /* export_rhs_to_cl_image bias */, data_type);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H