blob: 29f31c12c829a7085196a2947c203c5eef381446 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Validate.h"
#include <cmath>
#include <numeric>
namespace arm_compute
{
inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
// Calculate sampling position
float in_x = (x + 0.5f) * wr - 0.5f;
float in_y = (y + 0.5f) * hr - 0.5f;
// Get bounding box offsets
int x_from = std::floor(x * wr - 0.5f - in_x);
int y_from = std::floor(y * hr - 0.5f - in_y);
int x_to = std::ceil((x + 1) * wr - 0.5f - in_x);
int y_to = std::ceil((y + 1) * hr - 0.5f - in_y);
// Clamp position to borders
in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
// Clamp bounding box offsets to borders
x_from = ((in_x + x_from) < -1) ? -1 : x_from;
y_from = ((in_y + y_from) < -1) ? -1 : y_from;
x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to;
y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to;
// Get pixel index
const int xi = std::floor(in_x);
const int yi = std::floor(in_y);
// Bounding box elements in each dimension
const int x_elements = (x_to - x_from + 1);
const int y_elements = (y_to - y_from + 1);
ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
// Sum pixels in area
int sum = 0;
for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
{
const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
sum = std::accumulate(ptr, ptr + x_elements, sum);
}
// Return average
return sum / (x_elements * y_elements);
}
template <size_t dimension>
struct IncrementIterators
{
template <typename T, typename... Ts>
static void unroll(T &&it, Ts &&... iterators)
{
auto increment = [](T && it)
{
it.increment(dimension);
};
utility::for_each(increment, std::forward<T>(it), std::forward<Ts>(iterators)...);
}
static void unroll()
{
// End of recursion
}
};
template <size_t dim>
struct ForEachDimension
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
const auto &d = w[dim - 1];
for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...))
{
id.set(dim - 1, v);
ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...);
}
}
};
template <>
struct ForEachDimension<0>
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
ARM_COMPUTE_UNUSED(w, iterators...);
lambda_function(id);
}
};
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators)
{
w.validate();
for(unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(w[i].step() == 0);
}
Coordinates id;
ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function), std::forward<Ts>(iterators)...);
}
inline constexpr Iterator::Iterator()
: _ptr(nullptr), _dims()
{
}
inline Iterator::Iterator(const ITensor *tensor, const Window &win)
: Iterator()
{
ARM_COMPUTE_ERROR_ON(tensor == nullptr);
ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr);
const ITensorInfo *info = tensor->info();
const Strides &strides = info->strides_in_bytes();
_ptr = tensor->buffer() + info->offset_first_element_in_bytes();
//Initialize the stride for each dimension and calculate the position of the first element of the iteration:
for(unsigned int n = 0; n < info->num_dimensions(); ++n)
{
_dims[n]._stride = win[n].step() * strides[n];
std::get<0>(_dims)._dim_start += strides[n] * win[n].start();
}
//Copy the starting point to all the dimensions:
for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n)
{
_dims[n]._dim_start = std::get<0>(_dims)._dim_start;
}
ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions());
}
inline void Iterator::increment(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension]._dim_start += _dims[dimension]._stride;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline constexpr int Iterator::offset() const
{
return _dims.at(0)._dim_start;
}
inline constexpr uint8_t *Iterator::ptr() const
{
return _ptr + _dims.at(0)._dim_start;
}
inline void Iterator::reset(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1);
_dims[dimension]._dim_start = _dims[dimension + 1]._dim_start;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline bool auto_init_if_empty(ITensorInfo &info,
const TensorShape &shape,
int num_channels,
DataType data_type,
QuantizationInfo quantization_info)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_data_type(data_type);
info.set_num_channels(num_channels);
info.set_tensor_shape(shape);
info.set_quantization_info(quantization_info);
return true;
}
return false;
}
inline bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source)
{
if(info_sink.tensor_shape().total_size() == 0)
{
info_sink.set_data_type(info_source.data_type());
info_sink.set_num_channels(info_source.num_channels());
info_sink.set_tensor_shape(info_source.tensor_shape());
info_sink.set_quantization_info(info_source.quantization_info());
info_sink.set_data_layout(info_source.data_layout());
return true;
}
return false;
}
inline bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_tensor_shape(shape);
return true;
}
return false;
}
inline bool set_format_if_unknown(ITensorInfo &info, Format format)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_format(format);
return true;
}
return false;
}
inline bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_data_type(data_type);
return true;
}
return false;
}
inline bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout)
{
if(info.data_layout() == DataLayout::UNKNOWN)
{
info.set_data_layout(data_layout);
return true;
}
return false;
}
inline bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info)
{
if(info.quantization_info().empty() && (is_data_type_quantized_asymmetric(info.data_type())))
{
info.set_quantization_info(quantization_info);
return true;
}
return false;
}
inline Coordinates index2coords(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!");
Coordinates coord{ 0 };
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
inline int coords2index(const TensorShape &shape, const Coordinates &coord)
{
int num_elements = shape.total_size();
ARM_COMPUTE_UNUSED(num_elements);
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!");
int index = 0;
int stride = 1;
for(unsigned int d = 0; d < coord.num_dimensions(); ++d)
{
index += coord[d] * stride;
stride *= shape[d];
}
return index;
}
inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
/* Return the index based on the data layout
* [N C H W]
* [3 2 1 0]
* [N H W C]
*/
switch(data_layout_dimension)
{
case DataLayoutDimension::CHANNEL:
return (data_layout == DataLayout::NCHW) ? 2 : 0;
break;
case DataLayoutDimension::HEIGHT:
return (data_layout == DataLayout::NCHW) ? 1 : 2;
break;
case DataLayoutDimension::WIDTH:
return (data_layout == DataLayout::NCHW) ? 0 : 1;
break;
case DataLayoutDimension::BATCHES:
return 3;
break;
default:
ARM_COMPUTE_ERROR("Data layout index not supported!");
break;
}
}
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
/* Return the index based on the data layout
* [N C H W]
* [3 2 1 0]
* [N H W C]
*/
switch(index)
{
case 0:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::WIDTH : DataLayoutDimension::CHANNEL;
break;
case 1:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::HEIGHT : DataLayoutDimension::WIDTH;
break;
case 2:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::CHANNEL : DataLayoutDimension::HEIGHT;
break;
case 3:
return DataLayoutDimension::BATCHES;
break;
default:
ARM_COMPUTE_ERROR("Index value not supported!");
break;
}
}
} // namespace arm_compute