blob: 6897e64d4b2b206145457441f1caf53eee1b567a [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include <assert.h>
#include <algorithm>
#include "arm_gemm.hpp"
#include "utils.hpp"
#include "arm_compute/core/NEON/kernels/arm_gemm/ndrange.hpp"
#include "mergeresults.hpp"
#include "transform.hpp"
#ifdef CYCLE_PROFILING
#include "profiler.hpp"
#endif
namespace arm_gemm {
// Implementation of the GemmCommon abstract class.
template<typename strategy, typename To, typename Tr>
class GemmHybridQuantized : public GemmCommon<To, Tr> {
typedef typename strategy::operand_type Toi;
typedef typename strategy::result_type Tri;
/* const properties set by constructor */
const CPUInfo * const _ci;
const unsigned int _Msize;
const unsigned int _Nsize;
const unsigned int _Ksize;
const unsigned int _nbatches;
const unsigned int _nmulti;
const bool _trB;
/* Blocking info */
const unsigned int _k_block;
const unsigned int _n_block;
const unsigned int _Mround;
/* Pretransposed buffer. */
const Toi *_B_transposed=nullptr;
const NDRange<4> _window_range;
Requantize32 _qp;
int32_t *row_bias = nullptr;
int32_t *col_bias = nullptr;
void *working_space = nullptr;
unsigned int _nthreads;
unsigned int get_col_sum_size() const {
return _Nsize * _nmulti * sizeof(int32_t);
}
static unsigned int compute_k_block(const GemmArgs &args) {
// We don't support K blocks as we only temporarily store 32 bit results.
return args._Ksize;
if (args._cfg && args._cfg->inner_block_size) {
return args._cfg->inner_block_size;
}
const unsigned int L1_size = args._ci->get_L1_cache_size();
// k_block: Find out how much of the larger array can be loaded into half the cache.
// This should account for associative caches.
unsigned int k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
// Needs to be (at least a single) multiple of the K unroll level.
k_block /= strategy::k_unroll();
k_block = std::max(k_block, 1U) * strategy::k_unroll();
// Now tune to presented problem size; this is how many blocks we need.
unsigned int numk_blocks = iceildiv(args._Ksize, k_block);
// So divide the space equally into that many blocks.
k_block = iceildiv(args._Ksize, numk_blocks);
// And round UP to the K unroll level required.
k_block = roundup(k_block, strategy::k_unroll());
return k_block;
}
static unsigned int compute_n_block(const GemmArgs &args) {
if (args._cfg && args._cfg->outer_block_size) {
return args._cfg->outer_block_size;
}
const unsigned int k_block = compute_k_block(args);
const unsigned int L2_size = args._ci->get_L2_cache_size();
// n_block: Work out how many rows (of length k_block) will fit in the L2
// Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
unsigned int n_block = (((L2_size * 9) / 10) - (k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
(sizeof(Toi) * k_block);
// Needs to be (at least a single) multiple of the kernel output width.
n_block /= strategy::out_width();
n_block = std::max(n_block, 1U) * strategy::out_width();
// And tune to the presented problem size.
unsigned int numblocks = iceildiv(args._Nsize, n_block);
n_block = iceildiv(args._Nsize, numblocks);
n_block = roundup(n_block, strategy::out_width());
return n_block;
}
public:
GemmHybridQuantized(GemmHybridQuantized &) = delete;
GemmHybridQuantized & operator= (GemmHybridQuantized &) = delete;
/* Constructor */
GemmHybridQuantized(const GemmArgs &args, const Requantize32 &qp)
: _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize),
_nbatches(args._nbatches), _nmulti(args._nmulti), _trB(args._trB),
_k_block(compute_k_block(args)), _n_block(compute_n_block(args)),
_Mround(roundup(args._Msize, strategy::out_height())),
_window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti),
_qp (qp), _nthreads(args._maxthreads) { }
// Interface implementation - Compulsory functions
ndrange_t get_window_size() const override {
return { _window_range.total_size(), 1u, 1u, 1u, 1u, 1u };
}
// This kernel can always be dynamically scheduled.
bool supports_dynamic_scheduling() const override {
return true;
}
void execute_1d(unsigned int start, unsigned int end, int threadid) {
#ifdef CYCLE_PROFILING
profiler prof;
#endif
strategy strat(_ci);
uintptr_t working_int = reinterpret_cast<uintptr_t>(working_space);
Tri *result_buffer = reinterpret_cast<Tri *>(working_int + (threadid * strategy::out_height() * _Nsize * sizeof(Tri)));
/* Make sure we've been set up correctly. */
assert(_B_transposed);
static_assert(std::is_same<To, Toi>::value, "gemm_native: Operand types must be the same.");
/* For now, each work item implies all the K for a given output
* pixel (so we don't need to synchronize access to the output
* array). So separate the loop over K blocks here. */
for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
unsigned int kmax = std::min(k0 + _k_block, _Ksize);
unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll());
auto p = _window_range.iterator(start, end);
if (p.done()) {
return;
}
do {
const unsigned int m_start = p.dim(0) * strategy::out_height();
const unsigned int m_end = std::min((p.dim(0) + 1) * strategy::out_height(), _Msize);
const unsigned int batch = p.dim(1);
const unsigned int n0 = p.dim(2) * _n_block;
const unsigned int nmax = std::min(n0 + _n_block, _Nsize);
const unsigned int multi = p.dim(3);
int32_t local_row_sums[strategy::out_height()];
const Toi *b_panel = _B_transposed +
(multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) +
(k0 * roundup(_Nsize, strategy::out_width())) +
(n0 * kern_k);
{
#ifdef CYCLE_PROFILING
auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width()));
#endif
strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda,
b_panel,
result_buffer, (nmax-n0),
(m_end - m_start), (nmax - n0), kern_k,
nullptr, Activation(), false);
}
{
#ifdef CYCLE_PROFILING
auto p = prof.ScopedProfiler(PROFILE_ROWSUMS, (m_end - m_start) * _Ksize);
#endif
compute_row_sums(_qp, _Ksize, (m_end - m_start),
this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda), this->_lda,
local_row_sums);
}
{
#ifdef CYCLE_PROFILING
auto p = prof.ScopedProfiler(PROFILE_QUANTIZE, (m_end - m_start) * _Nsize);
#endif
requantize_block_32(_qp, (nmax - n0), (m_end - m_start), result_buffer, (nmax - n0),
this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc,
local_row_sums, col_bias + (multi * _Nsize) + n0);
}
} while (p.next_dim0());
}
}
// Execute
void execute(const ndcoord_t& work_range, const ndcoord_t& thread_locator, int threadid) override {
UNUSED(thread_locator);
const auto start = work_range.get_position(0);
const auto size = work_range.get_size(0);
const auto stop = start + size;
execute_1d(start, stop, threadid);
}
// Working space needed for intermediate result buffers.
size_t get_working_size() const override {
return (_nthreads * strategy::out_height() * _Nsize * sizeof(Tri));
}
void set_working_space(void *buffer) override {
working_space = buffer;
}
// Interface implementation - pretransposed
bool B_is_pretransposed() const override {
return true;
}
bool B_pretranspose_required() const override {
return (_B_transposed==nullptr);
}
size_t get_B_pretransposed_array_size() const override {
return get_col_sum_size() + (roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi));
}
void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
col_bias = reinterpret_cast<int32_t *>(in_buffer);
for (unsigned int i=0; i<_nmulti; i++) {
compute_col_sums(_qp, _Nsize, _Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _Nsize), _Ksize, i, 0);
}
uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
Toi *buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
_B_transposed = buffer;
strategy strat(_ci);
for (unsigned int multi=0; multi<_nmulti; multi++) {
for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
const unsigned int kmax = std::min(k0 + _k_block, _Ksize);
const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll());
for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) {
const unsigned int xmax = std::min(x0+_n_block, _Nsize);
const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size;
strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb,
x0, xmax, k0, kmax, _trB);
buffer += size;
}
}
}
}
void set_pretransposed_B_data(void *in_buffer) override {
uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
_B_transposed = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
col_bias = reinterpret_cast<int32_t *>(in_buffer);
}
void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override {
_qp.bias = bias;
_qp.bias_multi_stride = bias_multi_stride;
}
};
} // namespace arm_gemm