blob: c68c526ec980e37ffed5a6f1a5943eadf15f69b8 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/TensorInfo.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;
Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(overflow_policy);
ARM_COMPUTE_UNUSED(rounding_policy);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1,
1,
DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::S16, DataType::QSYMM16, DataType::F16,
DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2,
1,
DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::S16, DataType::QSYMM16, DataType::F16,
DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative.");
ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured output
if(output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output,
1,
DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::S16, DataType::QSYMM16, DataType::F16,
DataType::S32, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
"Output can only be U8 if both inputs are U8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8 && (input1->data_type() != DataType::QASYMM8 || input2->data_type() != DataType::QASYMM8),
"Output can only be QASYMM8 if both inputs are QASYMM8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8_SIGNED && (input1->data_type() != DataType::QASYMM8_SIGNED || input2->data_type() != DataType::QASYMM8_SIGNED),
"Output can only be QASYMM8_SIGNED if both inputs are QASYMM8_SIGNED");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QSYMM16 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
"Output can only be QSYMM16 if both inputs are QSYMM16");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
"Output can only be S32 if both inputs are QSYMM16");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
{
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
// Auto initialize output if not initialized
{
set_shape_if_empty(*output, out_shape);
if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
{
set_format_if_unknown(*output, Format::S16);
}
else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
{
set_format_if_unknown(*output, Format::F32);
}
else if(input1->data_type() == DataType::QASYMM8)
{
set_data_type_if_unknown(*output, DataType::QASYMM8);
}
else if(input1->data_type() == DataType::QASYMM8_SIGNED)
{
set_data_type_if_unknown(*output, DataType::QASYMM8_SIGNED);
}
else if(input1->data_type() == DataType::QSYMM16)
{
set_data_type_if_unknown(*output, DataType::QSYMM16);
}
}
Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win_input1, input1_access)
|| update_window_and_padding(win_input2, input2_access)
|| update_window_and_padding(win, output_access);
output_access.set_valid_region(win, valid_region);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLPixelWiseMultiplicationKernel::CLPixelWiseMultiplicationKernel()
: _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}
void CLPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale,
ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
{
configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, scale, overflow_policy, rounding_policy, act_info);
}
void CLPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale,
ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1, input2, output,
scale, overflow_policy, rounding_policy, act_info));
// Configure kernel window
auto win_config = validate_and_configure_window(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
_input1 = input1;
_input2 = input2;
_output = output;
int scale_int = -1;
// Extract sign, exponent and mantissa
int exponent = 0;
float normalized_mantissa = std::frexp(scale, &exponent);
// Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
// frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
// Moreover, it will be negative as we deal with 1/2^n
if((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
{
// Store the positive exponent. We know that we compute 1/2^n
// Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
scale_int = std::abs(exponent - 1);
}
std::string acc_type;
// Check if it has float inputs and output
if(is_data_type_float(input1->data_type()) || is_data_type_float(input2->data_type()))
{
scale_int = -1;
acc_type = (input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32) ? "float" : "half";
}
else
{
if(input1->element_size() == 2 || input2->element_size() == 2)
{
// Use 32-bit accumulator for 16-bit input
acc_type = "int";
}
else
{
// Use 16-bit accumulator for 8-bit input
acc_type = "ushort";
}
}
const bool is_quantized = is_data_type_quantized(input1->data_type());
// Set kernel build options
std::string kernel_name = "pixelwise_mul";
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->data_type()));
build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->data_type()));
build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->data_type()));
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
if(is_quantized && (output->data_type() != DataType::S32))
{
const UniformQuantizationInfo iq1_info = input1->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = input2->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
build_opts.add_option_if(is_data_type_quantized_asymmetric(input1->data_type()),
"-DOFFSET_IN1=" + support::cpp11::to_string(iq1_info.offset));
build_opts.add_option_if(is_data_type_quantized_asymmetric(input2->data_type()),
"-DOFFSET_IN2=" + support::cpp11::to_string(iq2_info.offset));
build_opts.add_option_if(is_data_type_quantized_asymmetric(output->data_type()),
"-DOFFSET_OUT=" + support::cpp11::to_string(oq_info.offset));
build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1_info.scale));
build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2_info.scale));
build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
kernel_name += "_quantized";
}
else
{
kernel_name += (scale_int >= 0) ? "_int" : "_float";
build_opts.add_option_if_else(overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->data_type()), "-DWRAP", "-DSATURATE");
build_opts.add_option_if_else(rounding_policy == RoundingPolicy::TO_ZERO, "-DROUND=_rtz", "-DROUND=_rte");
build_opts.add_option("-DACC_DATA_TYPE=" + acc_type);
if(act_info.enabled())
{
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
}
}
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set scale argument
unsigned int idx = 3 * num_arguments_per_3D_tensor(); // Skip the inputs and output parameters
if(scale_int >= 0 && !is_quantized)
{
_kernel.setArg(idx++, scale_int);
}
else
{
_kernel.setArg(idx++, scale);
}
ICLKernel::configure_internal(win_config.second);
}
Status CLPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
return Status{};
}
void CLPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src_0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src_1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
const TensorShape &in_shape1 = src_0->info()->tensor_shape();
const TensorShape &in_shape2 = src_1->info()->tensor_shape();
const TensorShape &out_shape = dst->info()->tensor_shape();
bool can_collapse = true;
if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
{
can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
{
can_collapse = (in_shape1[d] == in_shape2[d]);
}
}
bool has_collapsed = false;
Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
Window slice = collapsed.first_slice_window_3D();
Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, src_0, slice_input1);
add_3D_tensor_argument(idx, src_1, slice_input2);
add_3D_tensor_argument(idx, dst, slice);
enqueue(queue, *this, slice, lws_hint());
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
}
while(collapsed.slide_window_slice_3D(slice));
}
BorderSize CLPixelWiseMultiplicationKernel::border_size() const
{
const unsigned int replicateSize = _output->dimension(0) - std::min(_input1->dimension(0), _input2->dimension(0));
const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
return BorderSize{ 0, border, 0, 0 };
}
namespace
{
constexpr unsigned int num_elems_processed_per_iteration_complex = 1;
Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
// Validate in case of configured output
if(output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
{
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
// Auto initialize output if not initialized
const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
auto_init_if_empty(*output, out_info);
Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
bool window_changed = update_window_and_padding(win_input1, input1_access)
|| update_window_and_padding(win_input2, input2_access)
|| update_window_and_padding(win, output_access);
output_access.set_valid_region(win, valid_region);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLComplexPixelWiseMultiplicationKernel::CLComplexPixelWiseMultiplicationKernel()
: _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}
void CLComplexPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ActivationLayerInfo &act_info)
{
configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, act_info);
}
void CLComplexPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1, input2, output, act_info));
// Configure kernel window
auto win_config = validate_and_configure_window_complex(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
_input1 = input1;
_input2 = input2;
_output = output;
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_output->data_type()));
if(act_info.enabled())
{
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
}
// Create kernel
_kernel = create_kernel(compile_context, "pixelwise_mul_complex", build_opts.options());
ICLKernel::configure_internal(win_config.second);
}
Status CLComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
return Status{};
}
void CLComplexPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src_0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src_1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
const TensorShape &in_shape1 = src_0->info()->tensor_shape();
const TensorShape &in_shape2 = src_1->info()->tensor_shape();
const TensorShape &out_shape = dst->info()->tensor_shape();
bool can_collapse = true;
if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
{
can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
{
can_collapse = (in_shape1[d] == in_shape2[d]);
}
}
bool has_collapsed = false;
Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
Window slice = collapsed.first_slice_window_3D();
Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, src_0, slice_input1);
add_3D_tensor_argument(idx, src_1, slice_input2);
add_3D_tensor_argument(idx, dst, slice);
enqueue(queue, *this, slice, lws_hint());
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
}
while(collapsed.slide_window_slice_3D(slice));
}
BorderSize CLComplexPixelWiseMultiplicationKernel::border_size() const
{
const unsigned int replicateSize = _output->dimension(0) - std::min(_input1->dimension(0), _input2->dimension(0));
const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
return BorderSize{ 0, border, 0, 0 };
}
} // namespace arm_compute