blob: 000c9ad04db56e31ebbf7a3122dd6f277f6bed4b [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/gpu/cl/kernels/ClSoftmaxKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/experimental/Types.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
/** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options.
*
* Prepares these build options:
* -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier.
* -DIFF_MIN - threshold difference between maximum value of input data and current processed value,
* it defines whether the value will be taken into account or not.
*
* @param[in] build_opts Build options to extend
* @param[in] input_scale Input scaling factor
* @param[in] beta Exponent scaling factor beta
*/
CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta)
{
// Number of integer bits in temporary fixed-point representation of current-to-max difference
static const int scaled_diff_int_bits = 5;
// Number of integer bits used in temporary fixed-point representation of exponent accumulator
static const int exp_accumulation_in_bits = 12;
const double beta_multiplier = std::min(
1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)),
(1LL << 31) - 1.0);
int input_beta_multiplier;
int input_beta_left_shift;
quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift);
const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1LL << (31 - scaled_diff_int_bits)) / (1LL << input_beta_left_shift);
const int diff_min = -1.f * std::floor(max_input_rescaled);
CLBuildOptions build_opts;
build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits));
build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits));
build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier));
build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift));
build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min));
return build_opts;
}
Status validate_arguments_1DMaxShiftExpSum(const ITensorInfo &src, const ITensorInfo &max, const ITensorInfo &dst, const ITensorInfo &sum)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &max);
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());
// Checks performed when output is configured
if(dst.total_size() != 0)
{
if(is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
}
// Checks performed when sum is configured
if(sum.total_size() != 0)
{
if(is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&sum, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&max, &sum);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&max, &sum);
}
return Status{};
}
Status validate_arguments_1DNorm(const ITensorInfo &src, const ITensorInfo &sum, const ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::S32, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &sum);
ARM_COMPUTE_RETURN_ERROR_ON(info.is_log && !is_data_type_float(info.input_data_type));
// Note: output should always have a scale of 1/256 and offset 0
const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type);
// Checks performed when output is configured
if(dst.total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
if(!is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != allowed_quantization_info);
}
}
return Status{};
}
} // namespace
/**< Grid size (obtained through auto-tuning) */
const unsigned int ClLogits1DMaxShiftExpSumKernel::_grid_size = 64;
/**< Vector size in the serial case (obtained through auto-tuning) */
const unsigned int ClLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8;
/**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/
const unsigned int ClLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4;
void ClLogits1DMaxShiftExpSumKernel::configure(const CLCompileContext &compile_context, const ITensorInfo &src, ITensorInfo &max, ITensorInfo &dst, ITensorInfo &sum, const SoftmaxKernelInfo &info)
{
auto padding_info = get_padding_info({ &src, &max, &dst, &sum });
// Output auto initialization if not yet initialized
auto_init_if_empty(sum, src.clone()->set_tensor_shape(max.tensor_shape()));
auto_init_if_empty(dst, *src.clone());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(src, max, dst, sum));
const DataType dt = src.data_type();
const UniformQuantizationInfo qinfo = src.quantization_info().uniform();
const size_t reduction_dim_size = src.dimension(0);
const float beta = info.beta;
const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type);
const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;
ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size);
const unsigned int vector_size = adjust_vec_size(std::get<1>(parallel_reduction_info), reduction_dim_size);
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt));
build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(reduction_dim_size));
build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(reduction_dim_size % vector_size));
build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size))));
build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE");
build_opts.add_option_if(is_signed_qasymm8, "-DQASYMM8_SIGNED");
build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta));
build_opts.add_option_if(is_data_type_float(dt) && info.is_log, "-DLOG_SOFTMAX");
build_opts.add_option_if(is_data_type_float(dt), "-DMINVAL=" + ((dt == DataType::F16) ? std::string("-HALF_MAX") : std::string("-FLT_MAX")));
build_opts.add_options_if(is_data_type_quantized_asymmetric(dt), prepare_quantized_softmax_build_options(qinfo.scale, beta).options());
cl::NDRange lws_hint(cl::NullRange);
std::string kernel_name = std::string("softmax_layer_max_shift_exp_sum_") + (is_data_type_quantized_asymmetric(dt) ? "quantized_" : "");
// Configure parallel kernel if needed
if(std::get<0>(parallel_reduction_info))
{
kernel_name += "parallel";
bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0);
build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size));
// Handle boundary conditions.
const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size;
build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE");
// Setting _lws_hint in this way can also communicate grid_size to ClLogits1DMaxShiftExpSumKernel::run().
// A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0].
lws_hint = cl::NDRange(_grid_size);
}
else
{
kernel_name += "serial";
}
// Create kernel.
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Configure window
Window win = calculate_max_window(src, Steps(reduction_dim_size));
IClKernel::configure_internal(win, lws_hint);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo &src, const ITensorInfo &max, const ITensorInfo &dst, const ITensorInfo &sum)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(src, max, dst, sum));
return Status{};
}
ClLogits1DMaxShiftExpSumKernel::ParallelReductionInfo ClLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size)
{
bool is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1);
unsigned int vector_size = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size;
return std::make_tuple(is_parallel_reduction, vector_size);
}
void ClLogits1DMaxShiftExpSumKernel::run_op(ITensorPack &tensors, const Window &window, ::cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
auto max = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_0));
auto sum = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_1));
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, max, sum);
// Collapse window in Z dimension
Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ);
// Reconfigure window in case of parallel reduction
ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(src->info()->dimension(0));
if(std::get<0>(parallel_reduction_info))
{
// Launch grid_size parallel work items
window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size, 1));
}
// Get slices
Window slice = window_collapsed.first_slice_window_3D();
do
{
unsigned int idx = 0;
// Set inputs
add_3D_tensor_argument(idx, src, slice);
add_3D_tensor_argument(idx, max, slice);
add_3D_tensor_argument(idx, dst, slice);
add_3D_tensor_argument(idx, sum, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}
void ClLogits1DNormKernel::configure(const CLCompileContext &compile_context, const ITensorInfo &src, const ITensorInfo &sum, ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
auto padding_info = get_padding_info({ &src, &dst, &sum });
// Note: output should always have a scale of 1/256 and offset 0
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type);
const DataType output_data_type = info.input_data_type;
const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
const UniformQuantizationInfo qinfo = src.quantization_info().uniform();
// Output auto initialization if not yet initialized
auto_init_if_empty(dst, src.clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(src, sum, dst, info));
const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type);
const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;
const unsigned int vector_size = adjust_vec_size(16, src.dimension(0));
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(info.input_data_type));
build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(src.dimension(0) % vector_size));
build_opts.add_option_if(is_data_type_quantized_asymmetric_signed(info.input_data_type), "-DQASYMM8_SIGNED");
build_opts.add_options_if(is_quantized_asymmetric,
prepare_quantized_softmax_build_options(qinfo.scale, info.beta).options());
build_opts.add_option_if(info.is_log, "-DLOG_SOFTMAX");
// Create kernel
std::string kernel_name = std::string("softmax_layer_norm") + (is_quantized_asymmetric ? "_quantized" : "");
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Configure window
auto win = calculate_max_window(src, Steps(vector_size));
ICLKernel::configure_internal(win);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClLogits1DNormKernel::validate(const ITensorInfo &src, const ITensorInfo &sum, const ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(src, sum, dst, info));
return Status{};
}
void ClLogits1DNormKernel::run_op(ITensorPack &tensors, const Window &window, ::cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
auto sum = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_0));
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, sum);
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
Window slice = window_collapsed.first_slice_window_3D();
do
{
Window sum_slice = slice;
sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));
unsigned int idx = 0;
// Set inputs
add_3D_tensor_argument(idx, src, slice);
add_3D_tensor_argument(idx, sum, sum_slice);
add_3D_tensor_argument(idx, dst, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute