blob: 3a693524710acf40045a19b31c6b00079f662902 [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/algorithms/TopologicalSort.h"
#include "arm_compute/graph/Graph.h"
#include "support/Iterable.h"
#include <list>
#include <stack>
namespace arm_compute
{
namespace graph
{
namespace detail
{
/** Checks if all the input dependencies of a node have been visited
*
* @param[in] node Node to check
* @param[in] visited Vector that contains the visited information
*
* @return True if all inputs dependencies have been visited else false
*/
inline bool all_inputs_are_visited(const INode *node, const std::vector<bool> &visited)
{
ARM_COMPUTE_ERROR_ON(node == nullptr);
const Graph *graph = node->graph();
ARM_COMPUTE_ERROR_ON(graph == nullptr);
bool are_all_visited = true;
for(const auto &input_edge_id : node->input_edges())
{
if(input_edge_id != EmptyNodeID)
{
const Edge *input_edge = graph->edge(input_edge_id);
ARM_COMPUTE_ERROR_ON(input_edge == nullptr);
ARM_COMPUTE_ERROR_ON(input_edge->producer() == nullptr);
if(!visited[input_edge->producer_id()])
{
are_all_visited = false;
break;
}
}
}
return are_all_visited;
}
} // namespace detail
std::vector<NodeID> bfs(Graph &g)
{
std::vector<NodeID> bfs_order_vector;
// Created visited vector
std::vector<bool> visited(g.nodes().size(), false);
// Create BFS queue
std::list<NodeID> queue;
// Push inputs and mark as visited
for(auto &input : g.nodes(NodeType::Input))
{
if(input != EmptyNodeID)
{
visited[input] = true;
queue.push_back(input);
}
}
// Push const nodes and mark as visited
for(auto &const_node : g.nodes(NodeType::Const))
{
if(const_node != EmptyNodeID)
{
visited[const_node] = true;
queue.push_back(const_node);
}
}
// Iterate over vector and edges
while(!queue.empty())
{
// Dequeue a node from queue and process
NodeID n = queue.front();
bfs_order_vector.push_back(n);
queue.pop_front();
const INode *node = g.node(n);
ARM_COMPUTE_ERROR_ON(node == nullptr);
for(const auto &eid : node->output_edges())
{
const Edge *e = g.edge(eid);
ARM_COMPUTE_ERROR_ON(e == nullptr);
if(!visited[e->consumer_id()] && detail::all_inputs_are_visited(e->consumer(), visited))
{
visited[e->consumer_id()] = true;
queue.push_back(e->consumer_id());
}
}
}
return bfs_order_vector;
}
std::vector<NodeID> dfs(Graph &g)
{
std::vector<NodeID> dfs_order_vector;
// Created visited vector
std::vector<bool> visited(g.nodes().size(), false);
// Create DFS stack
std::stack<NodeID> stack;
// Push inputs and mark as visited
for(auto &input : g.nodes(NodeType::Input))
{
if(input != EmptyNodeID)
{
visited[input] = true;
stack.push(input);
}
}
// Push const nodes and mark as visited
for(auto &const_node : g.nodes(NodeType::Const))
{
if(const_node != EmptyNodeID)
{
visited[const_node] = true;
stack.push(const_node);
}
}
// Iterate over vector and edges
while(!stack.empty())
{
// Pop a node from stack and process
NodeID n = stack.top();
dfs_order_vector.push_back(n);
stack.pop();
// Mark node as visited
if(!visited[n])
{
visited[n] = true;
}
const INode *node = g.node(n);
ARM_COMPUTE_ERROR_ON(node == nullptr);
// Reverse iterate to push branches from right to left and pop on the opposite order
for(const auto &eid : arm_compute::utils::iterable::reverse_iterate(node->output_edges()))
{
const Edge *e = g.edge(eid);
ARM_COMPUTE_ERROR_ON(e == nullptr);
if(!visited[e->consumer_id()] && detail::all_inputs_are_visited(e->consumer(), visited))
{
stack.push(e->consumer_id());
}
}
}
return dfs_order_vector;
}
} // namespace graph
} // namespace arm_compute