blob: 48d806dc7cce854c89e04b62416ecf794f84e8aa [file] [log] [blame]
/*
* Copyright (c) 2018-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClWinogradInputTransformKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, input->data_layout()), "Winograd input transform not supported");
ARM_COMPUTE_UNUSED(conv_info);
ARM_COMPUTE_UNUSED(output_tile_size);
ARM_COMPUTE_UNUSED(kernel_size);
// Validate configured output
if(output->total_size() != 0)
{
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_UNUSED(output);
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
bool window_changed = false;
int num_elems_processed_per_iteration = 1;
if(input->data_layout() == DataLayout::NHWC)
{
// In the case of FP16 computation, we can perform more
// output feature maps in a single work-item.
// From experiments, num_elems_processed_per_iteration = 2 looks good for fp16 to
// improve the performance. However, in order to make the implementation simpler,
// we set num_elems_processed_per_iteration = 2 only when the OFMs are multiple of 2.
// Note: At the moment, only Winograd Input Transform 3x3 can support N0 != 1
const DataType dt = input->data_type();
const size_t dim0 = input->dimension(0);
const size_t k_sz = winograd_info.kernel_size.area();
const bool cond = dt == DataType::F16 && ((dim0 % 2) == 0);
if(cond)
{
if(k_sz == 3 || k_sz == 9)
{
num_elems_processed_per_iteration = 2;
}
}
}
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
if(input->data_layout() == DataLayout::NCHW)
{
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
unsigned int num_elems_read_per_iteration_x = output_tile_size.width + kernel_size.width - 1;
unsigned int num_elems_read_per_iteration_y = output_tile_size.height + kernel_size.height - 1;
AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y);
window_changed = update_window_and_padding(win, input_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
ClWinogradInputTransformKernel::ClWinogradInputTransformKernel()
{
_type = CLKernelType::WINOGRAD;
}
BorderSize ClWinogradInputTransformKernel::border_size() const
{
return _border_size;
}
void ClWinogradInputTransformKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, winograd_info));
auto padding_info = get_padding_info({ src, dst });
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
_data_layout = src->data_layout();
const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(src->dimension(idx_w), src->dimension(idx_h)),
kernel_size,
output_tile_size,
conv_info);
_num_tiles_x = num_tiles.width;
_num_tiles_y = num_tiles.height;
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info);
// Output auto initialization if not yet initialized
auto_init_if_empty(*dst, src->clone()->set_tensor_shape(output_shape));
ARM_COMPUTE_ERROR_ON(_num_tiles_x * _num_tiles_y != static_cast<int>(dst->dimension(1)));
const size_t total_batches = src->tensor_shape().total_size_upper(3);
// Create window and update padding
auto win_config = validate_and_configure_window(src, dst, winograd_info);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
IClKernel::configure_internal(win_config.second, cl::NDRange(1, 1, 8));
_src_width = src->dimension(idx_w);
_src_height = src->dimension(idx_h);
CLBuildOptions build_opts;
if(_data_layout == DataLayout::NHWC)
{
build_opts.add_option("-DNHWC");
build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step()));
build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src->data_type()));
build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL");
build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL");
build_opts.add_option_if(total_batches > 1, "-DIS_BATCHED");
}
else
{
build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x));
build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src->data_type()));
build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL");
build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL");
build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(src->dimension(2)));
}
// Create kernel
std::string kernel_name = "winograd_input_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string();
// Get the maximum dimension from the tile size
const unsigned int tile_max_dim = std::max(output_tile_size.width, output_tile_size.height);
// Check optimized kernel if output_dims == 2x2
if((tile_max_dim == 2) && (_data_layout == DataLayout::NCHW))
{
_step_z = (src->dimension(2) % 2) != 0 ? 1 : 2;
}
// Append stepz and data layout
kernel_name += "_stepz";
kernel_name += support::cpp11::to_string(_step_z);
kernel_name += "_" + lower_string(string_from_data_layout(_data_layout));
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
_border_size = BorderSize(src->padding());
ARM_COMPUTE_ERROR_ON((src->data_layout() == DataLayout::NHWC) && has_padding_changed(padding_info));
_config_id = kernel_name;
_config_id += support::cpp11::to_string(src->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(src->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(src->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(conv_info.pad_left());
_config_id += "_";
_config_id += support::cpp11::to_string(conv_info.pad_top());
_config_id += "_";
_config_id += lower_string(string_from_data_layout(_data_layout));
}
Status ClWinogradInputTransformKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, winograd_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), dst->clone().get(), winograd_info).first);
return Status{};
}
void ClWinogradInputTransformKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
const size_t idx_c = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
const size_t total_batches = window.shape().total_size_upper(3);
// Collapse window
Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ);
if(_data_layout == DataLayout::NHWC)
{
Window slice = window_collapsed.first_slice_window_3D();
slice.set(1, Window::Dimension(0, _num_tiles_x * _num_tiles_y, 1));
slice.set(2, Window::Dimension(0, total_batches, 1));
unsigned int idx = 0;
add_4D_tensor_argument(idx, src, slice);
add_4D_tensor_argument(idx, dst, slice);
_kernel.setArg<cl_uint>(idx++, _src_width);
_kernel.setArg<cl_uint>(idx++, _src_height);
_kernel.setArg<cl_uint>(idx++, _num_tiles_x);
_kernel.setArg<cl_uint>(idx++, _num_tiles_y);
enqueue(queue, *this, slice, lws_hint());
}
else
{
Window slice = window_collapsed.first_slice_window_3D();
slice.set(idx_w, Window::Dimension(0, _num_tiles_x, 1));
slice.set(idx_h, Window::Dimension(0, _num_tiles_y, 1));
ARM_COMPUTE_ERROR_ON(((slice[idx_c].end() - slice[idx_c].start()) % _step_z) != 0);
slice.set(idx_c, Window::Dimension(slice[idx_c].start(), slice[idx_c].end(), _step_z));
unsigned int idx = 2 * num_arguments_per_3D_tensor();
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src->info()->strides_in_bytes()[3]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[3]));
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, src, slice);
add_3D_tensor_argument(idx, dst, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute