blob: 513d95884ea824e677d2340a34f170392f1703e4 [file] [log] [blame]
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement ShuffleNet network using the Compute Library's graph API */
class ShuffleNetExample : public Example
{
public:
ShuffleNetExample() : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ShuffleNet")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if (common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Set default layout if needed (Single kernel grouped convolution not yet supported int NHWC)
if (!common_opts.data_layout->is_set())
{
common_params.data_layout = DataLayout::NHWC;
}
// Checks
ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type),
"QASYMM8 not supported for this graph");
// Print parameter values
std::cout << common_params << std::endl;
std::cout << "Model: Shufflenet_1_g4" << std::endl;
// Create model path
std::string model_path = "/cnn_data/shufflenet_model/";
// Get trainable parameters data path
std::string data_path = common_params.data_path;
// Add model path to data path
if (!data_path.empty())
{
data_path += model_path;
}
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape =
permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor =
TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
// Create preprocessor
std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>(0);
graph << common_params.target << common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor),
false /* Do not convert to BGR */))
<< ConvolutionLayer(3U, 3U, 24U, get_weights_accessor(data_path, "conv3_0_w_0.npy", weights_layout),
get_weights_accessor(data_path, "conv3_0_b_0.npy", weights_layout),
PadStrideInfo(2, 2, 1, 1))
.set_name("Conv1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "conv3_0_bn_rm_0.npy"),
get_weights_accessor(data_path, "conv3_0_bn_riv_0.npy"),
get_weights_accessor(data_path, "conv3_0_bn_s_0.npy"),
get_weights_accessor(data_path, "conv3_0_bn_b_0.npy"), 1e-5f)
.set_name("Conv1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name("Conv1/Relu")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 1, 1)))
.set_name("pool1/MaxPool");
// Stage 2
add_residual_block(data_path, DataLayout::NCHW, 0U /* unit */, 112U /* depth */, 2U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 1U /* unit */, 136U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 2U /* unit */, 136U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 3U /* unit */, 136U /* depth */, 1U /* stride */);
// Stage 3
add_residual_block(data_path, DataLayout::NCHW, 4U /* unit */, 136U /* depth */, 2U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 5U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 6U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 7U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 8U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 9U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 10U /* unit */, 272U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 11U /* unit */, 272U /* depth */, 1U /* stride */);
// Stage 4
add_residual_block(data_path, DataLayout::NCHW, 12U /* unit */, 272U /* depth */, 2U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 13U /* unit */, 544U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 14U /* unit */, 544U /* depth */, 1U /* stride */);
add_residual_block(data_path, DataLayout::NCHW, 15U /* unit */, 544U /* depth */, 1U /* stride */);
graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("predictions/AvgPool")
<< FlattenLayer().set_name("predictions/Reshape")
<< FullyConnectedLayer(1000U, get_weights_accessor(data_path, "pred_w_0.npy", weights_layout),
get_weights_accessor(data_path, "pred_b_0.npy"))
.set_name("predictions/FC")
<< SoftmaxLayer().set_name("predictions/Softmax") << OutputLayer(get_output_accessor(common_params, 5));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.mlgo_file = common_params.mlgo_file;
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
void add_residual_block(const std::string &data_path,
DataLayout weights_layout,
unsigned int unit,
unsigned int depth,
unsigned int stride)
{
PadStrideInfo dwc_info = PadStrideInfo(1, 1, 1, 1);
const unsigned int gconv_id = unit * 2;
const unsigned int num_groups = 4;
const std::string unit_id_name = arm_compute::support::cpp11::to_string(unit);
const std::string gconv_id_name = arm_compute::support::cpp11::to_string(gconv_id);
const std::string gconv_id_1_name = arm_compute::support::cpp11::to_string(gconv_id + 1);
const std::string unit_name = "unit" + unit_id_name;
SubStream left_ss(graph);
SubStream right_ss(graph);
if (stride == 2)
{
right_ss << PoolingLayer(
PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(2, 2, 1, 1)))
.set_name(unit_name + "/pool_1/AveragePool");
dwc_info = PadStrideInfo(2, 2, 1, 1);
}
left_ss
<< ConvolutionLayer(1U, 1U, depth,
get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_w_0.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0), num_groups)
.set_name(unit_name + "/gconv1_" + gconv_id_name + "/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_rm_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_riv_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_s_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_b_0.npy"),
1e-5f)
.set_name(unit_name + "/gconv1_" + gconv_id_name + "/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name(unit_name + "/gconv1_" + gconv_id_name + "/Relu")
<< ChannelShuffleLayer(num_groups).set_name(unit_name + "/shuffle_0/ChannelShufle")
<< DepthwiseConvolutionLayer(
3U, 3U, get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_w_0.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), dwc_info)
.set_name(unit_name + "/gconv3_" + unit_id_name + "/depthwise")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_rm_0.npy"),
get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_riv_0.npy"),
get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_s_0.npy"),
get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_b_0.npy"), 1e-5f)
.set_name(unit_name + "/gconv3_" + unit_id_name + "/BatchNorm")
<< ConvolutionLayer(
1U, 1U, depth,
get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_w_0.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0), num_groups)
.set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_rm_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_riv_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_s_0.npy"),
get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_b_0.npy"),
1e-5f)
.set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/BatchNorm");
if (stride == 2)
{
graph << ConcatLayer(std::move(left_ss), std::move(right_ss)).set_name(unit_name + "/Concat");
}
else
{
graph << EltwiseLayer(std::move(left_ss), std::move(right_ss), EltwiseOperation::Add)
.set_name(unit_name + "/Add");
}
graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name(unit_name + "/Relu");
}
};
/** Main program for ShuffleNet
*
* Model is based on:
* https://arxiv.org/abs/1707.01083
* "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices"
* Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
*
* Provenance: https://s3.amazonaws.com/download.onnx/models/opset_9/shufflenet.tar.gz
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<ShuffleNetExample>(argc, argv);
}