blob: 89c80c55ef36c6b0b08fb55b322ca1932073ede4 [file] [log] [blame]
/*
* Copyright (c) 2018-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClWinogradOutputTransformKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/ActivationFunctionUtils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
#include <cmath>
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *input,
const ITensorInfo *bias,
const ITensorInfo *output,
const WinogradInfo &winograd_info,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON(output->data_layout() != winograd_info.output_data_layout);
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
const Size2D input_dimensions = winograd_info.input_dimensions;
const unsigned int num_channels = (winograd_info.kernel_size.width + winograd_info.output_tile_size.width - 1) *
(winograd_info.kernel_size.height + winograd_info.output_tile_size.height - 1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
!cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, winograd_info.output_data_layout),
"Winograd output transform not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->dimension(2) != num_channels, "Wrong number of channels");
// Compute number of elements to process in the X and Y direction
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles =
compute_winograd_convolution_tiles(input_dimensions, kernel_size, output_tile_size, conv_info);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(1) != static_cast<unsigned int>((num_tiles.area())));
if (bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
}
// Checks performed when output is configured
if (output->total_size() != 0)
{
const TensorInfo tensor_info_output =
input->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*input, winograd_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input,
ITensorInfo *bias,
ITensorInfo *output,
const Size2D &output_tile_size)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_UNUSED(bias);
unsigned int num_elems_processed_per_iteration = 1;
if (input->data_layout() == DataLayout::NHWC)
{
// In the case of FP16 computation, we can perform more
// output feature maps in a single work-item.
// From experiments, num_elems_processed_per_iteration = 2 looks good for fp16 to
// improve the performance. However, in order to make the implementation simpler,
// we set num_elems_processed_per_iteration = 2 only when the OFMs are multiple of 2.
const DataType dt = input->data_type();
const size_t dim0 = input->dimension(0);
const bool cond = dt == DataType::F16 && ((dim0 % 2) == 0);
if (cond)
{
num_elems_processed_per_iteration = 2;
}
}
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
bool window_changed = false;
if (output->data_layout() == DataLayout::NCHW)
{
const int output_static_window_end_x = ceil_to_multiple(output->dimension(0), output_tile_size.width);
const int output_static_window_end_y = ceil_to_multiple(output->dimension(1), output_tile_size.height);
AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration,
num_elems_processed_per_iteration);
AccessWindowStatic output_access(output, 0, 0, output_static_window_end_x, output_static_window_end_y);
window_changed = update_window_and_padding(win, input_access, output_access);
}
Status err =
(window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
ClWinogradOutputTransformKernel::ClWinogradOutputTransformKernel()
{
_type = CLKernelType::WINOGRAD;
}
void ClWinogradOutputTransformKernel::configure(const ClCompileContext &compile_context,
ITensorInfo *src,
ITensorInfo *bias,
ITensorInfo *dst,
const WinogradInfo &winograd_info,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*dst,
src->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*src, winograd_info)));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, winograd_info, act_info));
// Configure kernel window
auto win_config = validate_and_configure_window(src, bias, dst, winograd_info.output_tile_size);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
IClKernel::configure_internal(win_config.second);
auto padding_info = get_padding_info({src, bias, dst});
_is_nhwc = winograd_info.output_data_layout == DataLayout::NHWC;
// Compute num_tiles_x
const Size2D input_dimensions = winograd_info.input_dimensions;
const Size2D kernel_size = winograd_info.kernel_size;
const Size2D output_tile_size = winograd_info.output_tile_size;
const PadStrideInfo conv_info = winograd_info.convolution_info;
const int idx_width = get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::WIDTH);
const int idx_height =
get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::HEIGHT);
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles =
compute_winograd_convolution_tiles(input_dimensions, kernel_size, output_tile_size, conv_info);
const size_t total_batches = dst->tensor_shape().total_size_upper(3);
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
if ((output_tile_size.x() == 2) || (output_tile_size.x() == 1 && output_tile_size.y() == 2))
{
build_opts.add_option("-DVEC_SIZE=2");
}
else if ((output_tile_size.x() == 4) || (output_tile_size.x() == 1 && output_tile_size.y() == 4))
{
build_opts.add_option("-DVEC_SIZE=4");
}
_num_tiles_x = num_tiles.width;
// Conditions of -cl-fast-relaxed-math causing accuracy issues can be traced from COMPMID-5324
const GPUTarget gpu_target = get_target();
const auto act_function = act_info.activation();
const auto src_data_type = src->data_type();
if ((gpu_target != GPUTarget::G71 && (gpu_target & GPUTarget::GPU_ARCH_MASK) == GPUTarget::BIFROST) &&
(act_function == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU ||
act_function == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) &&
(src_data_type == DataType::F32 || src_data_type == DataType::F16))
{
// -cl-fast-relaxed-math also sets -cl-finite-math-only and -cl-unsafe-math-optimizations
// to disable -cl-finite-math-only, we only include -cl-unsafe-math-optimizations
build_opts.add_option("-cl-unsafe-math-optimizations");
}
else
{
build_opts.add_option("-cl-fast-relaxed-math");
}
if (_is_nhwc)
{
build_opts.add_option_if(bias != nullptr, std::string("-DHAS_BIAS"));
build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step()));
build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src_data_type));
build_opts.add_option_if(total_batches > 1, "-DIS_BATCHED");
build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL");
build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL");
build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x));
}
else
{
build_opts.add_option_if(bias != nullptr, std::string("-DHAS_BIAS"));
build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step()));
build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(num_tiles.width));
build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src_data_type));
build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(1)));
build_opts.add_option("-DDST_WIDTH=" + support::cpp11::to_string(dst->dimension(idx_width)));
build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height)));
build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(src->dimension(2)));
build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL");
build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL");
}
// Storing tensor dimensions to be sent later as kernel arguments
_src_height = src->dimension(1);
_dst_width = dst->dimension(idx_width);
_dst_height = dst->dimension(idx_height);
// Create kernel
std::string kernel_name = "winograd_output_transform_" + output_tile_size.to_string() + "_" +
kernel_size.to_string() + "_" +
lower_string(string_from_data_layout(winograd_info.output_data_layout));
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += lower_string(string_from_data_type(src_data_type));
_config_id += "_";
_config_id += support::cpp11::to_string(src->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(src->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(1));
_config_id += "_";
_config_id += lower_string(string_from_data_layout(winograd_info.output_data_layout));
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info) && _is_nhwc);
}
Status ClWinogradOutputTransformKernel::validate(const ITensorInfo *src,
const ITensorInfo *bias,
const ITensorInfo *dst,
const WinogradInfo &winograd_info,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(
validate_arguments(src, (bias != nullptr ? bias->clone().get() : nullptr), dst, winograd_info, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(),
(bias != nullptr ? bias->clone().get() : nullptr),
dst->clone().get(), winograd_info.output_tile_size)
.first);
return Status{};
}
void ClWinogradOutputTransformKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IClKernel::window(), window);
auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
auto bias = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
// Collapse window
Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ);
// Get initial windows
Window slice = window_collapsed.first_slice_window_4D();
slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
// Setup output slice
Window slice_out(slice);
slice_out.set(Window::DimX, Window::Dimension(0, 0, 0));
slice_out.set(Window::DimY, Window::Dimension(0, 0, 0));
if (bias != nullptr)
{
unsigned int idx1 = 2 * num_arguments_per_4D_tensor();
Window slice_biases;
slice_biases.use_tensor_dimensions(bias->info()->tensor_shape());
add_1D_tensor_argument(idx1, bias, slice_biases);
}
if (_is_nhwc)
{
unsigned int idx2 = 2 * num_arguments_per_4D_tensor() + ((bias != nullptr) ? num_arguments_per_1D_tensor() : 0);
_kernel.setArg(idx2++, static_cast<int>(dst->info()->total_size() - dst->info()->strides_in_bytes().y()));
_kernel.setArg<cl_int>(idx2++, _src_height);
_kernel.setArg<cl_int>(idx2++, _dst_width);
_kernel.setArg<cl_int>(idx2++, _dst_height);
}
do
{
unsigned int idx = 0;
add_4D_tensor_argument(idx, src, slice);
add_4D_tensor_argument(idx, dst, slice_out);
enqueue(queue, *this, slice, lws_hint());
} while (window.slide_window_slice_3D(slice) && window.slide_window_slice_3D(slice_out));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute