blob: bb3999b1049e222bec4744d4b1a20398c55a27f9 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/pool3d/neon/impl.h"
namespace arm_compute
{
namespace cpu
{
namespace
{
inline float calculate_avg_scale(bool exclude_padding, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int pool_size_z, const int upper_bound_w,
const int upper_bound_h, const int upper_bound_d, const int pad_x, const int pad_y, const int pad_z, const int stride_x, const int stride_y, const int stride_z)
{
// Based on NDHWC
int start_x = id[1] * stride_x - pad_x;
int start_y = id[2] * stride_y - pad_y;
int start_z = id[3] * stride_z - pad_z;
const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
const int end_z = std::min(start_z + pool_size_z, upper_bound_d);
if(exclude_padding)
{
start_x = std::max(0, start_x);
start_y = std::max(0, start_y);
start_z = std::max(0, start_z);
}
return 1.f / ((end_y - start_y) * (end_x - start_x) * (end_z - start_z));
}
template <typename T>
void max_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window_out,
const int window_start_x, const int window_end_x, const int window_step_x)
{
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
int pool_stride_x = static_cast<int>(pool_info.stride.width);
int pool_stride_y = static_cast<int>(pool_info.stride.height);
int pool_stride_z = static_cast<int>(pool_info.stride.depth);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
const int pool_pad_top = static_cast<int>(pool_info.padding.top);
const int pool_pad_left = static_cast<int>(pool_info.padding.left);
const int pool_pad_front = static_cast<int>(pool_info.padding.front);
const int input_dim_w = src->info()->dimension(1);
const int input_dim_h = src->info()->dimension(2);
const int input_dim_d = src->info()->dimension(3);
const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
Iterator out(dst0, window_out);
vector_type vres;
execute_window_loop(window_out, [&](const Coordinates & id)
{
// Computing the theoretical input starting/ending points
const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
const int pool_start_x = std::max(0, -in_idx_width);
const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
const int pool_start_y = std::max(0, -in_idx_height);
const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
const int pool_start_z = std::max(0, -in_idx_depth);
const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
// The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
{
vres = wrapper::vdup_n(static_cast<T>(-std::numeric_limits<float>::infinity()), tag_type());
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
vres = wrapper::vmax(vres, data);
}
}
}
// Store result
wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
T res(0);
res = -std::numeric_limits<float>::infinity();
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
res = std::max(res, data);
}
}
}
// Store result
*(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
}
},
out);
}
template <typename T>
void avg_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info,
const Window &window_out, const int window_start_x, const int window_end_x, const int window_step_x)
{
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
int pool_stride_x = static_cast<int>(pool_info.stride.width);
int pool_stride_y = static_cast<int>(pool_info.stride.height);
int pool_stride_z = static_cast<int>(pool_info.stride.depth);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
const int pool_pad_top = static_cast<int>(pool_info.padding.top);
const int pool_pad_bottom = static_cast<int>(pool_info.padding.bottom);
const int pool_pad_left = static_cast<int>(pool_info.padding.left);
const int pool_pad_right = static_cast<int>(pool_info.padding.right);
const int pool_pad_front = static_cast<int>(pool_info.padding.front);
const int pool_pad_back = static_cast<int>(pool_info.padding.back);
const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const int upper_bound_d = src->info()->dimension(3) + (pool_info.exclude_padding ? 0 : pool_pad_back);
const int input_dim_w = src->info()->dimension(1);
const int input_dim_h = src->info()->dimension(2);
const int input_dim_d = src->info()->dimension(3);
const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
Iterator out(dst0, window_out);
vector_type vres;
execute_window_loop(window_out, [&](const Coordinates & id)
{
// Computing the theoretical input starting/ending points
const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
const int pool_start_x = std::max(0, -in_idx_width);
const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
const int pool_start_y = std::max(0, -in_idx_height);
const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
const int pool_start_z = std::max(0, -in_idx_depth);
const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
// The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, id, pool_size_x, pool_size_y, pool_size_z, upper_bound_w, upper_bound_h, upper_bound_d, pool_pad_left,
pool_pad_top, pool_pad_front, pool_stride_x,
pool_stride_y, pool_stride_z);
const vector_type scale_v = wrapper::vdup_n(static_cast<T>(scale), tag_type());
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
{
// Perform pooling
vres = wrapper::vdup_n(static_cast<T>(0.0f), tag_type());
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
vres = wrapper::vadd(vres, data);
}
}
}
// Divide by scale
vres = wrapper::vmul(vres, scale_v);
// Store result
wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
T res(0);
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
res += data;
}
}
}
// Divide by scale
res *= scale;
// Store result
*(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
}
},
out);
}
template <typename T>
void l2_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info,
const Window &window_out, const int window_start_x, const int window_end_x, const int window_step_x)
{
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
int pool_stride_x = static_cast<int>(pool_info.stride.width);
int pool_stride_y = static_cast<int>(pool_info.stride.height);
int pool_stride_z = static_cast<int>(pool_info.stride.depth);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
const int pool_pad_top = static_cast<int>(pool_info.padding.top);
const int pool_pad_bottom = static_cast<int>(pool_info.padding.bottom);
const int pool_pad_left = static_cast<int>(pool_info.padding.left);
const int pool_pad_right = static_cast<int>(pool_info.padding.right);
const int pool_pad_front = static_cast<int>(pool_info.padding.front);
const int pool_pad_back = static_cast<int>(pool_info.padding.back);
const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const int upper_bound_d = src->info()->dimension(3) + (pool_info.exclude_padding ? 0 : pool_pad_back);
const int input_dim_w = src->info()->dimension(1);
const int input_dim_h = src->info()->dimension(2);
const int input_dim_d = src->info()->dimension(3);
const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
Iterator out(dst0, window_out);
vector_type vres;
execute_window_loop(window_out, [&](const Coordinates & id)
{
// Computing the theoretical input starting/ending points
const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
const int pool_start_x = std::max(0, -in_idx_width);
const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
const int pool_start_y = std::max(0, -in_idx_height);
const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
const int pool_start_z = std::max(0, -in_idx_depth);
const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
// The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, id, pool_size_x, pool_size_y, pool_size_z, upper_bound_w, upper_bound_h, upper_bound_d, pool_pad_left,
pool_pad_top, pool_pad_front, pool_stride_x,
pool_stride_y, pool_stride_z);
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
{
// Perform pooling
vres = wrapper::vdup_n(static_cast<T>(0.0f), tag_type());
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
vres = wrapper::vmla(vres, data, data);
}
}
}
const vector_type scale_v = wrapper::vdup_n(static_cast<T>(scale), tag_type());
// Divide by scale
vres = wrapper::vmul(vres, scale_v);
// Calculate square-root
vres = wrapper::vinv(wrapper::vinvsqrt(vres));
// Store result
wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
T res(0);
for(int z = pool_start_z; z < pool_end_z; ++z)
{
const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
for(int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
res += data * data;
}
}
}
// Divide by scale
res *= scale;
// Square root
res = std::sqrt(res);
// Store result
*(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
}
},
out);
}
} // namespace
template <typename T>
void poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
constexpr int window_step_x = 16 / sizeof(T);
Window window_out = window;
// Needed to handle loop left-over
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
switch(pool_info.pool_type)
{
case PoolingType::MAX:
max_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
break;
case PoolingType::AVG:
avg_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
break;
case PoolingType::L2:
l2_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
break;
default:
ARM_COMPUTE_ERROR("Pool operation not supported");
}
}
template void poolingMxNxD_fp_neon_ndhwc<float>(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window);
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
template void poolingMxNxD_fp_neon_ndhwc<float16_t>(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window);
#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
} // namespace cpu
} // namespace arm_compute