blob: 18d648d2f24594cc0cacaeaa887c3002308047f0 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/gpu/cl/kernels/ClDirectConvolutionKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/CL/gemm/CLGEMMHelpers.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
const DataLayout data_layout = src->data_layout();
const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(width_idx) != weights->dimension(height_idx), "Weights should have same width and height");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(channel_idx) != src->dimension(channel_idx),
"Weights feature map dimension should match the respective src's one");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->num_dimensions() > 4, "Weights can be at most 4 dimensional");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((weights->dimension(width_idx) == 1) && std::get<0>(conv_info.stride()) > 3, "Strides larger than 3 not supported for 1x1 convolution.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((weights->dimension(width_idx) == 3 || weights->dimension(width_idx) == 5 || weights->dimension(width_idx) == 9)
&& std::get<0>(conv_info.stride()) > 2,
"Strides larger than 2 not supported for 3x3, 5x5, 9x9 convolution.");
if(data_layout == DataLayout::NCHW)
{
if(is_data_type_quantized(src->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(width_idx) != 1 && weights->dimension(width_idx) != 3 && weights->dimension(width_idx) != 5 && weights->dimension(width_idx) != 9,
"Kernel sizes other than 1x1, 3x3, 5x5 or 9x9 are not supported with quantized data types");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(width_idx) != 1 && weights->dimension(width_idx) != 3 && weights->dimension(width_idx) != 5,
"Kernel sizes other than 1x1, 3x3 or 5x5 are not supported with float data types");
}
}
if(biases != nullptr)
{
if(is_data_type_quantized_asymmetric(src->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->dimension(0) != weights->dimension(3),
"Biases size and number of src feature maps should match");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->num_dimensions() > 1,
"Biases should be one dimensional");
}
// Checks performed when dst is configured
if(dst->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(),
misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
}
const auto data_type = src->data_type();
if(is_data_type_quantized(data_type))
{
const UniformQuantizationInfo iqinfo = src->quantization_info().uniform();
const UniformQuantizationInfo wqinfo = weights->quantization_info().uniform();
const UniformQuantizationInfo oqinfo = dst->quantization_info().uniform();
float multiplier = iqinfo.scale * wqinfo.scale / oqinfo.scale;
int output_multiplier = 0;
int output_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
}
return Status{};
}
inline bool can_run_optimized_kernel_for_bifrost_nchw(GPUTarget gpu_target, unsigned int conv_stride_x, unsigned int conv_stride_y, unsigned int kernel_size,
DataType data_type, DataLayout data_layout)
{
return gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT)
&& (kernel_size <= 5)
&& (conv_stride_x == 1) && (conv_stride_y == 1)
&& (data_type == DataType::F32)
&& (data_layout == DataLayout::NCHW);
}
inline void setup_num_elems_nchw(unsigned int &num_elems_read_per_iteration_x, unsigned int &num_elems_read_per_iteration_y,
unsigned int &num_elems_written_per_iteration_x, unsigned int &num_elems_written_per_iteration_y,
unsigned int kernel_size, const PadStrideInfo &conv_info, const GPUTarget target, ITensorInfo *src)
{
const DataType data_type = src->data_type();
const DataLayout data_layout = src->data_layout();
unsigned int conv_stride_x = std::get<0>(conv_info.stride());
unsigned int conv_stride_y = std::get<1>(conv_info.stride());
const bool run_optimized_bifrost = can_run_optimized_kernel_for_bifrost_nchw(target, conv_stride_x, conv_stride_y, kernel_size, data_type, data_layout);
if(run_optimized_bifrost)
{
// Configure kernel window
switch(kernel_size)
{
case 1:
{
num_elems_read_per_iteration_x = 4;
num_elems_read_per_iteration_y = 4;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 4;
break;
}
case 3:
{
num_elems_read_per_iteration_x = 6;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 3;
break;
}
case 5:
{
num_elems_read_per_iteration_x = 8;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_x = 4;
num_elems_written_per_iteration_y = 2;
break;
}
default:
{
ARM_COMPUTE_ERROR("Kernel size not optimized for Bifrost");
}
}
}
else
{
num_elems_read_per_iteration_y = kernel_size;
num_elems_written_per_iteration_x = 8;
num_elems_written_per_iteration_y = 1;
switch(kernel_size)
{
case 1:
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 8;
break;
case 2:
num_elems_read_per_iteration_x = 16;
break;
case 3:
switch(src->element_size())
{
case 1:
num_elems_read_per_iteration_x = 28;
break;
case 2:
num_elems_read_per_iteration_x = 24;
break;
case 4:
num_elems_read_per_iteration_x = 22;
break;
default:
ARM_COMPUTE_ERROR("Invalid data size");
}
break;
default:
ARM_COMPUTE_ERROR("Invalid convolution stride X");
}
break;
case 3:
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 10;
break;
case 2:
num_elems_read_per_iteration_x = 17;
break;
default:
ARM_COMPUTE_ERROR("Invalid convolution stride X");
}
break;
case 5:
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 12;
break;
case 2:
num_elems_read_per_iteration_x = 20;
break;
default:
ARM_COMPUTE_ERROR("Invalid convolution stride X");
}
break;
case 9:
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 16;
break;
case 2:
num_elems_read_per_iteration_x = 24;
break;
default:
ARM_COMPUTE_ERROR("Invalid convolution stride X");
}
break;
default:
ARM_COMPUTE_ERROR("Invalid direct convolution size");
}
}
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info, const GPUTarget target)
{
const DataLayout data_layout = src->data_layout();
// Get dst shape
TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*dst, output_shape,
1,
src->data_type(),
src->quantization_info());
if(data_layout == DataLayout::NHWC)
{
const unsigned int vec_size = std::min(static_cast<unsigned int>(dst->tensor_shape()[0]), 4u);
unsigned int num_rows = 1U;
if(dst->tensor_shape()[0] > 16)
{
num_rows = src->data_type() == DataType::F32 ? 2U : 4U;
}
// Create window and update padding
Window win = calculate_max_window(output_shape, Steps(vec_size, num_rows));
return std::make_pair(Status{}, win);
}
else if(data_layout == DataLayout::NCHW)
{
const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int kernel_size = weights->dimension(width_idx);
unsigned int num_elems_read_per_iteration_x = 0;
unsigned int num_elems_read_per_iteration_y = 0;
unsigned int num_elems_written_per_iteration_x = 0;
unsigned int num_elems_written_per_iteration_y = 0;
unsigned int conv_pad_left = conv_info.pad_left();
unsigned int conv_pad_top = conv_info.pad_top();
unsigned int conv_stride_x = std::get<0>(conv_info.stride());
unsigned int conv_stride_y = std::get<1>(conv_info.stride());
setup_num_elems_nchw(num_elems_read_per_iteration_x, num_elems_read_per_iteration_y,
num_elems_written_per_iteration_x, num_elems_written_per_iteration_y,
kernel_size, conv_info, target, src);
// Create window and update padding
bool window_changed = false;
Window win = calculate_max_window(*dst, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));
AccessWindowRectangle input_access(src, -conv_pad_left, -conv_pad_top, num_elems_read_per_iteration_x, num_elems_read_per_iteration_y, conv_stride_x, conv_stride_y);
AccessWindowStatic weights_access(weights, 0, 0, kernel_size, kernel_size);
AccessWindowRectangle output_access(dst, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);
window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
else
{
ARM_COMPUTE_ERROR("Not supported");
}
}
bool export_to_cl_image_support(ITensorInfo *tensor, GPUTarget gpu_target, DataLayout data_layout)
{
if(tensor->tensor_shape()[0] % 4 || (data_layout != DataLayout::NHWC))
{
return false;
}
// If not floating point
if(!is_data_type_float(tensor->data_type()))
{
return false;
}
if(gpu_target == GPUTarget::G71 || get_arch_from_target(gpu_target) == GPUTarget::MIDGARD)
{
return false;
}
// Check if the cl_khr_image2d_from_buffer extension is supported on the target platform
if(!image2d_from_buffer_supported(CLKernelLibrary::get().get_device()))
{
return false;
}
// Check cl image pitch alignment
if(get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()) == 0)
{
return false;
}
const size_t image_w = tensor->tensor_shape()[0] / 4;
const size_t image_h = tensor->tensor_shape()[1] * tensor->tensor_shape()[2] * tensor->tensor_shape()[3];
const size_t max_image_w = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_IMAGE2D_MAX_WIDTH>();
const size_t max_image_h = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_IMAGE2D_MAX_HEIGHT>();
if(image_w > max_image_w || image_h > max_image_h)
{
return false;
}
return true;
}
} // namespace
BorderSize ClDirectConvolutionKernel::border_size() const
{
return _border_size;
}
void ClDirectConvolutionKernel::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
// Perform validation
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src,
weights,
(biases != nullptr) ? biases : nullptr,
dst,
conv_info));
const int conv_stride_x = std::get<0>(conv_info.stride());
const int conv_stride_y = std::get<1>(conv_info.stride());
_data_layout = src->data_layout();
_conv_info = conv_info;
const unsigned int width_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
const unsigned int kernel_size = weights->dimension(width_idx);
const DataType data_type = src->data_type();
const GPUTarget gpu_target = get_target();
// Configure kernel window
auto win_config = validate_and_configure_window(src, weights, dst, conv_info, gpu_target);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
std::stringstream kernel_name;
CLBuildOptions build_options;
if(_data_layout == DataLayout::NHWC)
{
_border_size = BorderSize();
kernel_name << "direct_convolution_nhwc";
const unsigned int n0 = win_config.second.x().step();
const unsigned int m0 = win_config.second.y().step();
const unsigned int k0 = adjust_vec_size(is_data_type_quantized(data_type)? 16u : 8u, src->dimension(channel_idx));
const unsigned int partial_store_n0 = dst->dimension(channel_idx) % n0;
const unsigned int pad_left = conv_info.pad_left();
const unsigned int pad_top = conv_info.pad_top();
const bool export_to_cl_image = export_to_cl_image_support(weights, gpu_target, _data_layout);
// Update the padding for the weights tensor if we can export to cl_image
if(export_to_cl_image)
{
arm_compute::cl_gemm::update_padding_for_cl_image(weights);
}
if(biases != nullptr)
{
build_options.add_option(std::string("-DHAS_BIAS"));
build_options.add_option(std::string("-DBIA_DATA_TYPE=" + get_cl_type_from_data_type(biases->data_type())));
}
build_options.add_option("-cl-fast-relaxed-math");
build_options.add_option("-DSRC_TENSOR_TYPE=BUFFER");
build_options.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(width_idx)));
build_options.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(height_idx)));
build_options.add_option("-DSRC_CHANNELS=" + support::cpp11::to_string(src->dimension(channel_idx)));
build_options.add_option("-DSRC_DATA_TYPE=" + get_cl_type_from_data_type(src->data_type()));
build_options.add_option("-DDST_TENSOR_TYPE=BUFFER");
build_options.add_option("-DDST_WIDTH=" + support::cpp11::to_string(dst->dimension(width_idx)));
build_options.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(height_idx)));
build_options.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(channel_idx)));
build_options.add_option("-DDST_DATA_TYPE=" + get_cl_type_from_data_type(dst->data_type()));
build_options.add_option_if_else(export_to_cl_image, "-DWEI_TENSOR_TYPE=IMAGE", "-DWEI_TENSOR_TYPE=BUFFER");
build_options.add_option("-DWEI_WIDTH=" + support::cpp11::to_string(weights->dimension(width_idx)));
build_options.add_option("-DWEI_HEIGHT=" + support::cpp11::to_string(weights->dimension(height_idx)));
build_options.add_option("-DWEI_DATA_TYPE=" + get_cl_type_from_data_type(weights->data_type()));
build_options.add_option("-DSTRIDE_X=" + support::cpp11::to_string(conv_stride_x));
build_options.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(conv_stride_y));
build_options.add_option("-DPAD_LEFT=" + support::cpp11::to_string(pad_left));
build_options.add_option("-DPAD_TOP=" + support::cpp11::to_string(pad_top));
build_options.add_option("-DN0=" + support::cpp11::to_string(n0));
build_options.add_option("-DM0=" + support::cpp11::to_string(m0));
build_options.add_option("-DK0=" + support::cpp11::to_string(k0));
build_options.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));
if(is_data_type_quantized(data_type))
{
const UniformQuantizationInfo iqinfo = src->quantization_info().uniform();
const UniformQuantizationInfo wqinfo = weights->quantization_info().uniform();
const UniformQuantizationInfo oqinfo = dst->quantization_info().uniform();
PixelValue zero_value = PixelValue(0, src->data_type(), src->quantization_info());
int zero_value_s32;
zero_value.get(zero_value_s32);
float multiplier = iqinfo.scale * wqinfo.scale / oqinfo.scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
build_options.add_option("-DIS_QUANTIZED");
build_options.add_option("-DDST_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_options.add_option("-DDST_SHIFT=" + support::cpp11::to_string(output_shift));
build_options.add_option("-DSRC_OFFSET=" + support::cpp11::to_string(-iqinfo.offset));
build_options.add_option("-DWEI_OFFSET=" + support::cpp11::to_string(-wqinfo.offset));
build_options.add_option("-DDST_OFFSET=" + support::cpp11::to_string(oqinfo.offset));
build_options.add_option("-DZERO_VALUE=" + support::cpp11::to_string(zero_value_s32));
build_options.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(DataType::S32));
}
else
{
build_options.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(data_type));
build_options.add_option("-DZERO_VALUE=" + support::cpp11::to_string(0));
build_options.add_option("-DSRC_OFFSET=" + support::cpp11::to_string(0));
build_options.add_option("-DWEI_OFFSET=" + support::cpp11::to_string(0));
build_options.add_option("-DDST_OFFSET=" + support::cpp11::to_string(0));
}
}
else
{
_border_size = BorderSize(src->padding());
kernel_name << "direct_convolution" << kernel_size << "x" << kernel_size;
build_options.add_option_if(biases != nullptr, std::string("-DHAS_BIAS"));
const bool run_optimized_for_bifrost = can_run_optimized_kernel_for_bifrost_nchw(gpu_target, conv_stride_x, conv_stride_y, kernel_size, data_type, _data_layout);
if(run_optimized_for_bifrost)
{
build_options.add_option(std::string("-DWEIGHTS_DEPTH=" + support::cpp11::to_string(weights->dimension(channel_idx))));
kernel_name << "_f32_bifrost";
}
else
{
build_options.add_option(std::string("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)));
build_options.add_option(std::string("-DDATA_SIZE=" + get_data_size_from_data_type(data_type)));
build_options.add_option(std::string("-DWEIGHTS_DEPTH=" + support::cpp11::to_string(weights->dimension(channel_idx))));
build_options.add_option(std::string("-DSTRIDE_X=" + support::cpp11::to_string(conv_stride_x)));
build_options.add_option(std::string("-DDATA_TYPE_PROMOTED=" + get_cl_type_from_data_type(data_type)));
if(is_data_type_quantized(data_type))
{
const UniformQuantizationInfo iqinfo = src->quantization_info().uniform();
const UniformQuantizationInfo wqinfo = weights->quantization_info().uniform();
const UniformQuantizationInfo oqinfo = dst->quantization_info().uniform();
float multiplier = iqinfo.scale * wqinfo.scale / oqinfo.scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
build_options.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_options.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
build_options.add_option("-DKERNEL_SIZE=" + support::cpp11::to_string(kernel_size));
build_options.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iqinfo.offset));
build_options.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wqinfo.offset));
build_options.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oqinfo.offset));
kernel_name.str("direct_convolution_quantized");
}
}
}
_kernel = create_kernel(compile_context, kernel_name.str(), build_options.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name.str();
_config_id += "_";
_config_id += lower_string(string_from_data_type(data_type));
_config_id += "_";
_config_id += support::cpp11::to_string(kernel_size);
_config_id += "_";
_config_id += support::cpp11::to_string(border_size().left);
_config_id += "_";
_config_id += support::cpp11::to_string(border_size().top);
_config_id += "_";
_config_id += support::cpp11::to_string(border_size().right);
_config_id += "_";
_config_id += support::cpp11::to_string(border_size().bottom);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_stride_x);
_config_id += "_";
_config_id += support::cpp11::to_string(conv_stride_y);
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(width_idx));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(height_idx));
_config_id += "_";
_config_id += lower_string(string_from_data_layout(_data_layout));
}
Status ClDirectConvolutionKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
const GPUTarget target)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), weights->clone().get(), dst->clone().get(), conv_info, target).first);
return Status{};
}
void ClDirectConvolutionKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
// Get initial windows
Window slice = window.first_slice_window_3D();
const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto weights = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
const auto biases = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
if(_data_layout == DataLayout::NHWC)
{
cl::Image2D weights_cl_image;
const size_t dim_y_collapsed = ceil_to_multiple(dst->info()->dimension(1) * dst->info()->dimension(2), slice.y().step());
const bool export_to_cl_image = export_to_cl_image_support(weights->info(), get_target(), _data_layout);
slice.set(Window::DimY, Window::Dimension(0, dim_y_collapsed, slice.y().step()));
slice.set(Window::DimZ, Window::Dimension(0, dst->info()->dimension(3), 1));
if(export_to_cl_image)
{
const size_t image_w = weights->info()->dimension(0) / 4;
const size_t image_h = weights->info()->dimension(1) * weights->info()->dimension(2) * weights->info()->dimension(3);
const TensorShape shape2d(image_w, image_h);
const size_t image_row_pitch = weights->info()->strides_in_bytes()[1];
// Export cl_buffer to cl_image
weights_cl_image = create_image2d_from_buffer(CLKernelLibrary::get().context(), weights->cl_buffer(), shape2d, weights->info()->data_type(), image_row_pitch);
}
unsigned int idx = 0;
add_4D_tensor_argument(idx, src, slice);
add_4D_tensor_argument(idx, dst, slice);
if(export_to_cl_image)
{
_kernel.setArg(idx++, weights_cl_image);
}
add_4D_tensor_argument(idx, weights, slice);
if(biases != nullptr)
{
add_1D_tensor_argument(idx, biases, slice);
}
enqueue(queue, *this, slice, lws_hint());
}
else
{
Window win_in = window;
win_in.adjust(Window::DimX, -_conv_info.pad_left(), true);
win_in.adjust(Window::DimY, -_conv_info.pad_top(), true);
const int width_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const int height_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
const int conv_stride_x = std::get<0>(_conv_info.stride());
const int conv_stride_y = std::get<1>(_conv_info.stride());
win_in.set_dimension_step(width_idx, window[width_idx].step() * conv_stride_x);
win_in.set_dimension_step(height_idx, window[height_idx].step() * conv_stride_y);
Window slice_in = win_in.first_slice_window_3D();
unsigned int idx1 = 2 * num_arguments_per_3D_tensor();
add_3D_tensor_argument(idx1, weights, slice);
if(biases != nullptr)
{
Window slice_biases;
slice_biases.use_tensor_dimensions(biases->info()->tensor_shape());
add_1D_tensor_argument(idx1, biases, slice_biases);
}
_kernel.setArg(idx1++, static_cast<unsigned int>(weights->info()->strides_in_bytes()[3]));
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, src, slice_in);
add_3D_tensor_argument(idx, dst, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window.slide_window_slice_3D(slice) && win_in.slide_window_slice_3D(slice_in));
}
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute