blob: a13a0f56a25dca9839582605bff86f301bdacdcd [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuScale.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/utils/ScaleUtils.h"
#include "src/cpu/kernels/CpuScaleKernel.h"
#include "support/Rounding.h"
namespace arm_compute
{
namespace cpu
{
namespace
{
void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, SamplingPolicy sampling_policy, bool align_corners)
{
ARM_COMPUTE_ERROR_ON(offsets == nullptr);
float sampling_offset = 0.0f;
if(sampling_policy == SamplingPolicy::CENTER)
{
sampling_offset = 0.5f;
}
Window win;
win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1));
win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1));
if(dx != nullptr && dy != nullptr)
{
// Pre-compute the offset and pixel's distance for BILINEAR interpolation
Iterator offsets_it(offsets, win);
Iterator dx_it(dx, win);
Iterator dy_it(dy, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const float in_x = (id.x() + sampling_offset) * wr - sampling_offset;
const float in_y = (id.y() + sampling_offset) * hr - sampling_offset;
const int in_xi = std::floor(in_x);
const int in_yi = std::floor(in_y);
*reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
*reinterpret_cast<float *>(dx_it.ptr()) = in_x - in_xi;
*reinterpret_cast<float *>(dy_it.ptr()) = in_y - in_yi;
},
offsets_it, dx_it, dy_it);
}
else
{
// Pre-compute the offset for NEAREST interpolation
Iterator offsets_it(offsets, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const float float_in_xi = (id.x() + sampling_offset) * wr;
const auto in_xi = static_cast<size_t>(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi));
*reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
},
offsets_it);
}
}
} // namespace
void CpuScale::configure(ITensorInfo *src, ITensorInfo *dst, const ScaleKernelInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(CpuScale::validate(src, dst, info));
ARM_COMPUTE_LOG_PARAMS(src, dst, info);
_scale_info = info;
_is_prepared = false;
// Get data layout and width/height indices
_data_layout = _scale_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : _scale_info.data_layout;
const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
// Compute the ratio between source width/height and destination width/height
const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);
// Area interpolation behaves as Nearest Neighbour in case of up-sampling
InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
&& hr <= 1.f) ?
InterpolationPolicy::NEAREST_NEIGHBOR :
_scale_info.interpolation_policy;
// Get the tensor shape
TensorShape shape(dst->dimension(idx_width));
shape.set(1, dst->dimension(idx_height), false);
TensorInfo tensor_info_offsets(shape, Format::S32);
TensorInfo tensor_info_dxdy(shape, Format::F32);
auto dx = std::make_unique<TensorInfo>(tensor_info_dxdy);
auto dy = std::make_unique<TensorInfo>(tensor_info_dxdy);
auto offsets = std::make_unique<TensorInfo>(tensor_info_offsets);
auto scale_kernel = std::make_unique<kernels::CpuScaleKernel>();
switch(policy_to_use)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
{
scale_kernel->configure(src, nullptr, nullptr, offsets.get(), dst, info);
break;
}
case InterpolationPolicy::BILINEAR:
{
scale_kernel->configure(src, dx.get(), dy.get(), offsets.get(), dst, info);
break;
}
case InterpolationPolicy::AREA:
{
scale_kernel->configure(src, nullptr, nullptr, nullptr, dst, info);
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported interpolation mode");
}
_kernel = std::move(scale_kernel);
}
Status CpuScale::validate(const ITensorInfo *src, const ITensorInfo *dst, const ScaleKernelInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);
ITensorInfo *offsets = nullptr;
ITensorInfo *dx = nullptr;
ITensorInfo *dy = nullptr;
// Get data layout and width/height indices
const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Compute the ratio between source width/height and destination width/height
const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);
const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);
// Area interpolation behaves as Nearest Neighbour in case of up-sampling
InterpolationPolicy policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;
// Get the tensor shape of auxilary buffers
const TensorShape shape(dst->dimension(idx_width), dst->dimension(idx_height));
TensorInfo tensor_info_offsets(shape, Format::S32);
TensorInfo tensor_info_dx(shape, Format::F32);
TensorInfo tensor_info_dy(shape, Format::F32);
switch(policy_to_use)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
offsets = &tensor_info_offsets;
break;
case InterpolationPolicy::BILINEAR:
offsets = &tensor_info_offsets;
dx = &tensor_info_dx;
dy = &tensor_info_dy;
break;
default:
break;
}
ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuScaleKernel::validate(src->clone().get(), dx, dy, offsets, dst->clone().get(), info));
return Status{};
}
void CpuScale::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
_is_prepared = true;
const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
auto dx = tensors.get_tensor(TensorType::ACL_INT_0);
auto dy = tensors.get_tensor(TensorType::ACL_INT_1);
auto offsets = tensors.get_tensor(TensorType::ACL_INT_2);
// Get data layout and width/height indices
const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
// Compute the ratio between source width/height and destination width/height
const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
const auto wr = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_width), dst->info()->dimension(idx_width), is_align_corners_used);
const auto hr = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), is_align_corners_used);
// Area interpolation behaves as Nearest Neighbour in case of up-sampling
InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
&& hr <= 1.f) ?
InterpolationPolicy::NEAREST_NEIGHBOR :
_scale_info.interpolation_policy;
const SamplingPolicy sampling_policy = _scale_info.sampling_policy;
bool precompute_indices_weights = arm_compute::scale_utils::is_precomputation_required(_data_layout, src->info()->data_type(), policy_to_use, _scale_info.border_mode);
if(precompute_indices_weights)
{
switch(policy_to_use)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
{
// Pre-compute offsets for nearest interpolation
precompute_dx_dy_offsets(nullptr, nullptr, offsets, wr, hr, sampling_policy, is_align_corners_used);
break;
}
case InterpolationPolicy::BILINEAR:
{
// Pre-compute dx, dy and offsets for bilinear interpolation
precompute_dx_dy_offsets(dx, dy, offsets, wr, hr, sampling_policy, is_align_corners_used);
break;
}
case InterpolationPolicy::AREA:
{
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported interpolation mode");
}
}
else
{
if(policy_to_use != InterpolationPolicy::NEAREST_NEIGHBOR && policy_to_use != InterpolationPolicy::BILINEAR && policy_to_use != InterpolationPolicy::AREA)
{
ARM_COMPUTE_ERROR("Unsupported interpolation mode");
}
}
}
}
void CpuScale::run(ITensorPack &tensors)
{
ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
prepare(tensors);
NEScheduler::get().schedule_op(_kernel.get(), Window::DimY, _kernel->window(), tensors);
}
} // namespace cpu
} // namespace arm_compute