blob: d5ecdf7dd27338ce3e5c7efc364968c44a9cdd04 [file] [log] [blame]
/*
* Copyright (c) 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClMatMulLowpNativeKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/gpu/cl/ClCompileContext.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
Status validate_matmul_kernel_info(const MatMulKernelInfo &matmul_kernel_info)
{
const bool adj_lhs = matmul_kernel_info.adj_lhs;
const bool adj_rhs = matmul_kernel_info.adj_rhs;
const int m0 = matmul_kernel_info.m0;
const int n0 = matmul_kernel_info.n0;
const int k0 = matmul_kernel_info.k0;
// Validate M0
ARM_COMPUTE_RETURN_ERROR_ON_MSG(m0 < 1, "Only positive integers are supported for M0");
if(adj_lhs)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((m0 & (m0 - 1)) && (m0 != 3)) || (m0 > 16), "Only 1,2,3,4,8,16 are supported for M0 for Lhs transposed");
}
// Validate N0
ARM_COMPUTE_RETURN_ERROR_ON_MSG(n0 < 1, "Only positive integers are supported for N0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((n0 & (n0 - 1)) && (n0 != 3)) || (n0 > 16), "Only 1,2,3,4,8,16 are supported for N0");
// Validate K0
ARM_COMPUTE_RETURN_ERROR_ON_MSG(k0 < 1, "Only positive integers are supported for K0");
if(!adj_lhs || adj_rhs)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((k0 & (k0 - 1)) && (k0 != 3)) || (k0 > 16), "Only 1,2,3,4,8,16 are supported for K0");
}
return Status{};
}
Status validate_input_shapes(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const MatMulKernelInfo &matmul_kernel_info)
{
const size_t lhs_k = matmul_kernel_info.adj_lhs ? lhs_shape.y() : lhs_shape.x();
const size_t rhs_k = matmul_kernel_info.adj_rhs ? rhs_shape.x() : rhs_shape.y();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lhs_k != rhs_k, "K dimension in Lhs and Rhs matrices must match.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lhs_shape.total_size() == 0, "Lhs tensor can't be empty");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_shape.total_size() == 0, "Rhs tensor can't be empty");
constexpr size_t batch_dim_start = 2;
for(size_t i = batch_dim_start; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lhs_shape[i] != rhs_shape[i], "Batch dimension broadcasting is not supported");
}
return Status{};
}
}
ClMatMulLowpNativeKernel::ClMatMulLowpNativeKernel()
{
_type = CLKernelType::GEMM;
}
Status ClMatMulLowpNativeKernel::validate(const ITensorInfo *lhs, const ITensorInfo *rhs, const ITensorInfo *output, const MatMulKernelInfo &matmul_kernel_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lhs, rhs, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lhs, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, rhs);
ARM_COMPUTE_RETURN_ON_ERROR(validate_matmul_kernel_info(matmul_kernel_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_input_shapes(lhs->tensor_shape(), rhs->tensor_shape(), matmul_kernel_info));
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(misc::shape_calculator::compute_matmul_shape(lhs->tensor_shape(), rhs->tensor_shape(), matmul_kernel_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, output);
}
return Status{};
}
void ClMatMulLowpNativeKernel::configure(const ClCompileContext &compile_context, ITensorInfo *lhs, ITensorInfo *rhs, ITensorInfo *output, const MatMulKernelInfo &matmul_kernel_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(lhs, rhs, output, &compile_context, &matmul_kernel_info);
ARM_COMPUTE_LOG_PARAMS(lhs, rhs, output, matmul_kernel_info);
ARM_COMPUTE_ERROR_THROW_ON(validate(lhs, rhs, output, matmul_kernel_info));
// output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, lhs->clone()->set_tensor_shape(misc::shape_calculator::compute_matmul_shape(lhs->tensor_shape(), rhs->tensor_shape(), matmul_kernel_info)));
const int m = output->dimension(1);
const int n = output->dimension(0);
const int k = matmul_kernel_info.adj_lhs ? lhs->tensor_shape().y() : lhs->tensor_shape().x();
const bool adj_lhs = matmul_kernel_info.adj_lhs;
int m0 = adj_lhs ? adjust_vec_size(matmul_kernel_info.m0, m) : std::min(matmul_kernel_info.m0, m);
int n0 = adjust_vec_size(matmul_kernel_info.n0, n);
// Configure kernel window
Window win = calculate_max_window(*output, Steps(n0, m0));
win = win.collapse(win, Window::DimZ);
IClKernel::configure_internal(win);
// Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
const unsigned int partial_store_m0 = m % m0;
const unsigned int partial_store_n0 = n % n0;
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(lhs->data_type()));
build_opts.add_option("-DM0=" + support::cpp11::to_string(m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(matmul_kernel_info.k0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
build_opts.add_option("-DK=" + support::cpp11::to_string(k));
const UniformQuantizationInfo lqinfo = lhs->quantization_info().uniform();
const UniformQuantizationInfo rqinfo = rhs->quantization_info().uniform();
const UniformQuantizationInfo dqinfo = output->quantization_info().uniform();
float multiplier = lqinfo.scale * rqinfo.scale / dqinfo.scale;
int output_multiplier = 0;
int output_shift = 0;
arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
build_opts.add_option("-DDST_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_opts.add_option("-DDST_SHIFT=" + support::cpp11::to_string(output_shift));
build_opts.add_option("-DLHS_OFFSET=" + support::cpp11::to_string(-lqinfo.offset)); // Note this is passed as negative to maintain similarity with CLDirectConv2D
build_opts.add_option("-DRHS_OFFSET=" + support::cpp11::to_string(-rqinfo.offset)); // Note this is passed as negative to maintain similarity with CLDirectConv2D
build_opts.add_option("-DDST_OFFSET=" + support::cpp11::to_string(dqinfo.offset)); // Passed as positive (unlike the above two)
std::string kernel_name("mat_mul_native_quantized");
kernel_name += matmul_kernel_info.adj_lhs ? "_t" : "_nt";
kernel_name += matmul_kernel_info.adj_rhs ? "_t" : "_nt";
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
const size_t number_of_batches = output->tensor_shape().total_size() / (m * n);
_config_id = kernel_name;
_config_id += "_";
_config_id += lower_string(string_from_data_type(lhs->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(m);
_config_id += "_";
_config_id += support::cpp11::to_string(n);
_config_id += "_";
_config_id += support::cpp11::to_string(k);
_config_id += "_";
_config_id += support::cpp11::to_string(number_of_batches);
_config_id += "_";
_config_id += support::cpp11::to_string(m0);
_config_id += "_";
_config_id += support::cpp11::to_string(n0);
_config_id += "_";
_config_id += support::cpp11::to_string(matmul_kernel_info.k0);
}
void ClMatMulLowpNativeKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const ICLTensor *lhs = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const ICLTensor *rhs = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
ICLTensor *output = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
ARM_COMPUTE_ERROR_ON_NULLPTR(lhs, rhs, output);
ARM_COMPUTE_LOG_PARAMS(lhs, rhs, output);
unsigned int idx = 0;
Window window_collapsed = window.collapse(ICLKernel::window(), Window::DimZ);
add_3d_tensor_nhw_argument(idx, lhs);
add_3d_tensor_nhw_argument(idx, rhs);
add_3d_tensor_nhw_argument(idx, output);
enqueue(queue, *this, window_collapsed, lws_hint());
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute