blob: 7d0b1a40a9b826cd3856b1450d3c2f1d77cac653 [file] [log] [blame]
/*
* Copyright (c) 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE
#define ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::opencl::kernels;
template <typename T, typename KernelType>
class MatMulKernelValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type)
{
// For brevity, the input shapes are assumed to be not-transposed for both Lhs and Rhs matrices.
QuantizationInfo lhs_q_info;
QuantizationInfo rhs_q_info;
QuantizationInfo dst_q_info;
if(is_data_type_quantized(data_type))
{
const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
std::mt19937 generator(library->seed());
std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const int32_t offset_lhs = distribution_t(generator);
const int32_t offset_rhs = distribution_t(generator);
lhs_q_info = QuantizationInfo(scale_lhs, offset_lhs);
rhs_q_info = QuantizationInfo(scale_rhs, offset_rhs);
const int m = shape_a.y();
const int n = shape_b.x();
const int k = shape_a.x();
dst_q_info = calculate_mat_mul_dst_q_info(lhs_q_info, rhs_q_info, m, n, k, data_type);
}
if(pretranspose_a)
{
permute(shape_a, PermutationVector(1U, 0U));
}
if(pretranspose_b)
{
permute(shape_b, PermutationVector(1U, 0U));
}
_device_supports_export_to_cl_image = image2d_from_buffer_supported(CLKernelLibrary::get().get_device());
if(!export_rhs_to_cl_image || _device_supports_export_to_cl_image)
{
_target = compute_target(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, export_rhs_to_cl_image, data_type, lhs_q_info, rhs_q_info, dst_q_info);
_reference = compute_reference(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, data_type, lhs_q_info, rhs_q_info, dst_q_info);
}
}
protected:
template <typename U>
void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(lo), float(hi) };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(lo, hi);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
template <typename U, typename D>
void fill_constant(U &&tensor, D value)
{
library->fill_tensor_value(tensor, value);
}
CLTensor compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, const int M0, const int N0, const int K0,
bool export_rhs_to_cl_image, DataType data_type, const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
{
CLSynthetizeOperator<KernelType> matMul{};
MatMulKernelInfo matmul_info;
matmul_info.adj_lhs = pretranspose_a;
matmul_info.adj_rhs = pretranspose_b;
matmul_info.m0 = M0;
matmul_info.n0 = N0;
matmul_info.k0 = K0;
matmul_info.export_rhs_to_cl_image = export_rhs_to_cl_image;
// Create tensors
CLTensor a = create_tensor<CLTensor>(shape_a, data_type, 1, lhs_q_info);
CLTensor b = create_tensor<CLTensor>(shape_b, data_type, 1, rhs_q_info);
CLTensor dst = create_tensor<CLTensor>(output_shape, data_type, 1, dst_q_info);
matMul.configure(a.info(), b.info(), dst.info(), matmul_info);
ARM_COMPUTE_ASSERT(a.info()->is_resizable());
ARM_COMPUTE_ASSERT(b.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
// Allocate tensors
a.allocator()->allocate();
b.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(CLAccessor(a), 0);
fill(CLAccessor(b), 1);
// Compute matMul kernel
ITensorPack tensors_pack({ { ACL_SRC_0, &a },
{ ACL_SRC_1, &b },
{ ACL_DST, &dst }
});
matMul.run(tensors_pack);
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, DataType data_type,
const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
{
// We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D
// This is necessary unless we choose to extend gemm reference for 5D+ tensors
TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
TensorShape shape_a_collapsed = shape_a.collapsed_from(Window::DimZ);
TensorShape shape_b_collapsed = shape_b.collapsed_from(Window::DimZ);
// Create reference
SimpleTensor<T> a{ shape_a_collapsed, data_type, 1, lhs_q_info };
SimpleTensor<T> b{ shape_b_collapsed, data_type, 1, rhs_q_info };
SimpleTensor<T> c{ output_shape_collapsed, data_type, 1, dst_q_info };
// Fill reference
fill(a, 0);
fill(b, 1);
/* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
in order to be able to call reference implementation that works with (B x M x K) input.
Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
// Define transposed shapes
TensorShape a_transposed_shape(a.shape());
a_transposed_shape.set(0, a.shape().y());
a_transposed_shape.set(1, a.shape().x());
TensorShape b_transposed_shape(b.shape());
b_transposed_shape.set(0, b.shape().y());
b_transposed_shape.set(1, b.shape().x());
// Define transposed tensors
SimpleTensor<T> a_transposed{ a_transposed_shape, data_type };
SimpleTensor<T> b_transposed{ b_transposed_shape, data_type };
// pretranspose a if necessary
if(pretranspose_a)
{
a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
}
// pretranspose b if necessary
if(pretranspose_b)
{
b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
}
// Use transposed tensors if boolean enabled else use original tensors
SimpleTensor<T> result = gemm_reference<T>((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c);
// We reshape the gemm output back if the tensor is high dimensional
if(output_shape_collapsed != output_shape)
{
result = reference::reshape_layer(result, output_shape);
}
return result;
}
template <typename U = T>
typename std::enable_if < std::is_same<U, float>::value || std::is_same<U, half>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
{
// Setting beta to 0 will effectively disable C for the
// computation of the reference: alpha * A * B + 0 * C
return reference::gemm<U>(a, b, c, 1.0f, 0.f);
}
template <typename U = T>
typename std::enable_if < std::is_same<U, int8_t>::value || std::is_same<U, uint8_t>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
{
const UniformQuantizationInfo aq = a.quantization_info().uniform();
const UniformQuantizationInfo bq = b.quantization_info().uniform();
const UniformQuantizationInfo cq = c.quantization_info().uniform();
const SimpleTensor<int32_t> result = reference::gemmlowp_matrix_multiply_core<int32_t, U, U>(a, b, c.shape(), -aq.offset, -bq.offset);
std::vector<int32_t> gemmlowp_multipliers{ 1 };
std::vector<int32_t> gemmlowp_shifts{ 1 };
const int gemmlowp_offset = cq.offset;
const float scale = aq.scale * bq.scale / cq.scale;
quantization::calculate_quantized_multiplier(scale, &gemmlowp_multipliers[0], &gemmlowp_shifts[0]);
constexpr int32_t gemmlowp_min_bound = std::numeric_limits<int32_t>::min();
constexpr int32_t gemmlowp_max_bound = std::numeric_limits<int32_t>::max();
SimpleTensor<int> bias{ c.shape(), DataType::S32 };
fill_constant(bias, static_cast<int32_t>(0));
const SimpleTensor<U> final_result = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, U>(result, bias,
gemmlowp_multipliers, gemmlowp_shifts, gemmlowp_offset, gemmlowp_min_bound, gemmlowp_max_bound);
return final_result;
}
CLTensor _target{};
SimpleTensor<T> _reference{};
bool _device_supports_export_to_cl_image{ true };
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE */