blob: 928a414fb0e7ffd9f76d06a14d2fca9af3b3a2ac [file] [log] [blame]
/*
* Copyright (c) 2020-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Window.h"
#include <cmath>
#include <cstddef>
#include "src/core/NEON/SVEAsymm.h"
#include "src/core/NEON/SVEMath.h"
#include <arm_sve.h>
namespace arm_compute
{
namespace cpu
{
void sve2_qasymm8_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window)
{
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationLayerInfo::ActivationFunction act = act_info.activation();
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
const auto va = svdup_n_u8(quantize_qasymm8(act_info.a(), qi_in));
const auto vb = svdup_n_u8(quantize_qasymm8(act_info.b(), qi_in));
const auto const_0 = quantize_qasymm8(0.f, qi_in);
const auto vconst_0 = svdup_n_u8(const_0);
const auto vconst_1 = svdup_n_f32(1.f);
const auto va_f32 = svdup_n_f32(act_info.a());
const auto vb_f32 = svdup_n_f32(act_info.b());
// Initialise scale/offset for re-quantization
bool requant = true;
if(qi_in.scale == qi_out.scale && qi_in.offset == qi_out.offset)
{
requant = false;
}
float s = qi_in.scale / qi_out.scale;
float o = -qi_in.offset * s + qi_out.offset;
auto vs = svdup_n_f32(s);
auto vo = svdup_n_f32(o);
// Initialise scale/offset for re-quantization with int32_t
const auto voffset_in = svdup_n_s32(qi_in.offset);
int32_t s_s32 = round(s * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN);
int32_t o_s32 = round(o * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN);
const auto vs_s32 = svdup_n_s32(s_s32);
const auto vo_s32 = svdup_n_s32(o_s32);
// Initialise scale/offset for re-quantization for leaky relu
int32_t s_leaky_s32 = round(s * act_info.a() * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN);
int32_t o_leaky_s32 = round((-qi_in.offset * s * act_info.a() + qi_out.offset) * (1 << 8),
arm_compute::RoundingPolicy::TO_NEAREST_EVEN);
const auto vs_leaky_s32 = svdup_n_s32(s_leaky_s32);
const auto vo_leaky_s32 = svdup_n_s32(o_leaky_s32);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
svuint8_t tmp;
int x = window_start_x;
svbool_t pg = svwhilelt_b8(x, window_end_x);
do
{
const auto vin = svld1_u8(pg, input_ptr + x);
if(act == ActivationLayerInfo::ActivationFunction::RELU)
{
// Perform activation
tmp = svmax_u8_z(pg, vconst_0, vin);
// Re-quantize to new output space
tmp = requant ? svmla_qasymm8_z(pg, tmp, vs, vo) : tmp;
}
else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
{
// Perform activation
tmp = svmin_u8_z(pg, va, svmax_u8_z(pg, vconst_0, vin));
// Re-quantize to new output space
tmp = requant ? svmla_qasymm8_z(pg, tmp, vs, vo) : tmp;
}
else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
{
// Perform activation
tmp = svmin_u8_z(pg, va, svmax_u8_z(pg, vb, vin));
// Re-quantize to new output space
tmp = svmla_qasymm8_z(pg, tmp, vs, vo);
}
else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
{
// De-quantize
const auto vin_deq = svdequantize_z(pg, vin, qi_in);
// Perform activation
const svfloat32x4_t tmp_dep = svcreate4_f32(svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 0))))),
svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 1))))),
svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 2))))),
svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 3))))));
// Re-quantize to new output space
tmp = svquantize_z(pg, tmp_dep, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::TANH)
{
// De-quantize
const auto vin_deq = svdequantize_z(pg, vin, qi_in);
// Perform activation
const svfloat32x4_t tmp_dep = svcreate4_f32(svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 0), vb_f32))),
svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 1), vb_f32))),
svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 2), vb_f32))),
svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 3), vb_f32))));
// Re-quantize to new output space
tmp = svquantize_z(pg, tmp_dep, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
{
svbool_t p0, p1, p2, p3;
svint32x4_t tmp_dep;
// Expand to int32
const svint32x4_t vin_s32 = svcreate4_s32(
svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(vin))),
svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(vin))),
svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(vin))),
svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(vin))));
// Compare elements to input offset
if(qi_in.scale >= 0)
{
p0 = svcmplt_s32(pg, svget4_s32(vin_s32, 0), voffset_in);
p1 = svcmplt_s32(pg, svget4_s32(vin_s32, 1), voffset_in);
p2 = svcmplt_s32(pg, svget4_s32(vin_s32, 2), voffset_in);
p3 = svcmplt_s32(pg, svget4_s32(vin_s32, 3), voffset_in);
}
else
{
p0 = svcmpgt_s32(pg, svget4_s32(vin_s32, 0), voffset_in);
p1 = svcmpgt_s32(pg, svget4_s32(vin_s32, 1), voffset_in);
p2 = svcmpgt_s32(pg, svget4_s32(vin_s32, 2), voffset_in);
p3 = svcmpgt_s32(pg, svget4_s32(vin_s32, 3), voffset_in);
}
// Multiply negative elements and requantize if necessary
if(requant)
{
tmp_dep = svcreate4_s32(
svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p0, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 0), svsel(p0, vs_leaky_s32, vs_s32)), 8),
svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p1, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 1), svsel(p1, vs_leaky_s32, vs_s32)), 8),
svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p2, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 2), svsel(p2, vs_leaky_s32, vs_s32)), 8),
svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p3, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 3), svsel(p3, vs_leaky_s32, vs_s32)), 8));
}
else
{
tmp_dep = svcreate4_s32(
svasr_n_s32_m(p0, svmad_s32_m(p0, svget4_s32(vin_s32, 0), vs_leaky_s32, vo_leaky_s32), 8),
svasr_n_s32_m(p1, svmad_s32_m(p1, svget4_s32(vin_s32, 1), vs_leaky_s32, vo_leaky_s32), 8),
svasr_n_s32_m(p2, svmad_s32_m(p2, svget4_s32(vin_s32, 2), vs_leaky_s32, vo_leaky_s32), 8),
svasr_n_s32_m(p3, svmad_s32_m(p3, svget4_s32(vin_s32, 3), vs_leaky_s32, vo_leaky_s32), 8));
}
// Convert uint32 vectors to uint16 vectors (with saturation)
const auto v_low_u16 = svqxtunt_s32(svqxtunb_s32(svget4_s32(tmp_dep, 0)), svget4_s32(tmp_dep, 1));
const auto v_high_u16 = svqxtunt_s32(svqxtunb_s32(svget4_s32(tmp_dep, 2)), svget4_s32(tmp_dep, 3));
// convert uint16 vectors to uint8 vectors (with saturation)
tmp = svqxtnt_u16(svqxtnb_u16(v_low_u16), v_high_u16);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
svst1_u8(pg, output_ptr + x, tmp);
x += svcntb();
pg = svwhilelt_b8(x, window_end_x);
}
while(svptest_any(svptrue_b8(), pg));
},
input, output);
}
} // namespace cpu
} // namespace arm_compute