blob: e9f945bd95f9a0ca9085aa97d26357985a54c407 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "OpenCLTimer.h"
#include "../Framework.h"
#include "../Utils.h"
#include "arm_compute/graph/INode.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#ifndef ARM_COMPUTE_CL
#error "You can't use OpenCLTimer without OpenCL"
#endif /* ARM_COMPUTE_CL */
namespace arm_compute
{
namespace test
{
namespace framework
{
template <bool output_timestamps>
std::string OpenCLClock<output_timestamps>::id() const
{
if(output_timestamps)
{
return "OpenCLTimestamps";
}
else
{
return "OpenCLTimer";
}
}
template <bool output_timestamps>
OpenCLClock<output_timestamps>::OpenCLClock(ScaleFactor scale_factor)
: _kernels(),
_real_function(nullptr),
#ifdef ARM_COMPUTE_GRAPH_ENABLED
_real_graph_function(nullptr),
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
_prefix(),
_timer_enabled(false)
{
auto q = CLScheduler::get().queue();
cl_command_queue_properties props = q.getInfo<CL_QUEUE_PROPERTIES>();
if((props & CL_QUEUE_PROFILING_ENABLE) == 0)
{
CLScheduler::get().set_queue(cl::CommandQueue(CLScheduler::get().context(), props | CL_QUEUE_PROFILING_ENABLE));
}
switch(scale_factor)
{
case ScaleFactor::NONE:
_scale_factor = 1.f;
_unit = "ns";
break;
case ScaleFactor::TIME_US:
_scale_factor = 1000.f;
_unit = "us";
break;
case ScaleFactor::TIME_MS:
_scale_factor = 1000000.f;
_unit = "ms";
break;
case ScaleFactor::TIME_S:
_scale_factor = 1000000000.f;
_unit = "s";
break;
default:
ARM_COMPUTE_ERROR("Invalid scale");
}
}
template <bool output_timestamps>
void OpenCLClock<output_timestamps>::test_start()
{
// Start intercepting enqueues:
ARM_COMPUTE_ERROR_ON(_real_function != nullptr);
_real_function = CLSymbols::get().clEnqueueNDRangeKernel_ptr;
auto interceptor = [this](
cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *gwo,
const size_t *gws,
const size_t *lws,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)
{
if(this->_timer_enabled)
{
kernel_info info;
cl::Kernel cpp_kernel(kernel, true);
std::stringstream ss;
ss << this->_prefix << cpp_kernel.getInfo<CL_KERNEL_FUNCTION_NAME>();
if(gws != nullptr)
{
ss << " GWS[" << gws[0] << "," << gws[1] << "," << gws[2] << "]";
}
if(lws != nullptr)
{
ss << " LWS[" << lws[0] << "," << lws[1] << "," << lws[2] << "]";
}
info.name = ss.str();
cl_event tmp;
cl_int retval = this->_real_function(command_queue, kernel, work_dim, gwo, gws, lws, num_events_in_wait_list, event_wait_list, &tmp);
info.event = tmp;
this->_kernels.push_back(std::move(info));
if(event != nullptr)
{
//return cl_event from the intercepted call
clRetainEvent(tmp);
*event = tmp;
}
return retval;
}
else
{
return this->_real_function(command_queue, kernel, work_dim, gwo, gws, lws, num_events_in_wait_list, event_wait_list, event);
}
};
CLSymbols::get().clEnqueueNDRangeKernel_ptr = interceptor;
#ifdef ARM_COMPUTE_GRAPH_ENABLED
ARM_COMPUTE_ERROR_ON(_real_graph_function != nullptr);
_real_graph_function = graph::TaskExecutor::get().execute_function;
// Start intercepting tasks:
auto task_interceptor = [this](graph::ExecutionTask & task)
{
if(task.node != nullptr && !task.node->name().empty())
{
this->_prefix = task.node->name() + "/";
}
else
{
this->_prefix = "";
}
this->_real_graph_function(task);
this->_prefix = "";
};
graph::TaskExecutor::get().execute_function = task_interceptor;
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
}
template <bool output_timestamps>
void OpenCLClock<output_timestamps>::start()
{
_kernels.clear();
_timer_enabled = true;
}
template <bool output_timestamps>
void OpenCLClock<output_timestamps>::stop()
{
_timer_enabled = false;
}
template <bool output_timestamps>
void OpenCLClock<output_timestamps>::test_stop()
{
// Restore real function
CLSymbols::get().clEnqueueNDRangeKernel_ptr = _real_function;
_real_function = nullptr;
#ifdef ARM_COMPUTE_GRAPH_ENABLED
graph::TaskExecutor::get().execute_function = _real_graph_function;
_real_graph_function = nullptr;
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
}
template <bool output_timestamps>
Instrument::MeasurementsMap OpenCLClock<output_timestamps>::measurements() const
{
MeasurementsMap measurements;
unsigned int kernel_number = 0;
for(auto const &kernel : _kernels)
{
cl_ulong queued;
cl_ulong flushed;
cl_ulong start;
cl_ulong end;
kernel.event.getProfilingInfo(CL_PROFILING_COMMAND_QUEUED, &queued);
kernel.event.getProfilingInfo(CL_PROFILING_COMMAND_SUBMIT, &flushed);
kernel.event.getProfilingInfo(CL_PROFILING_COMMAND_START, &start);
kernel.event.getProfilingInfo(CL_PROFILING_COMMAND_END, &end);
std::string name = kernel.name + " #" + support::cpp11::to_string(kernel_number++);
if(output_timestamps)
{
measurements.emplace("[start]" + name, Measurement(start / static_cast<cl_ulong>(_scale_factor), _unit));
measurements.emplace("[queued]" + name, Measurement(queued / static_cast<cl_ulong>(_scale_factor), _unit));
measurements.emplace("[flushed]" + name, Measurement(flushed / static_cast<cl_ulong>(_scale_factor), _unit));
measurements.emplace("[end]" + name, Measurement(end / static_cast<cl_ulong>(_scale_factor), _unit));
}
else
{
measurements.emplace(name, Measurement((end - start) / _scale_factor, _unit));
}
}
return measurements;
}
template <bool output_timestamps>
Instrument::MeasurementsMap OpenCLClock<output_timestamps>::test_measurements() const
{
MeasurementsMap measurements;
if(output_timestamps)
{
// The OpenCL clock and the wall clock are not in sync, so we use
// this trick to calculate the offset between the two clocks:
::cl::Event event;
cl_ulong now_gpu;
// Enqueue retrieve current CPU clock and enqueue a dummy marker
std::chrono::high_resolution_clock::time_point now_cpu = std::chrono::high_resolution_clock::now();
CLScheduler::get().queue().enqueueMarker(&event);
CLScheduler::get().queue().finish();
//Access the time at which the marker was enqueued:
event.getProfilingInfo(CL_PROFILING_COMMAND_QUEUED, &now_gpu);
measurements.emplace("Now Wall clock", Measurement(now_cpu.time_since_epoch().count() / 1000, "us"));
measurements.emplace("Now OpenCL", Measurement(now_gpu / static_cast<cl_ulong>(_scale_factor), _unit));
}
return measurements;
}
} // namespace framework
} // namespace test
} // namespace arm_compute
template class arm_compute::test::framework::OpenCLClock<true>;
template class arm_compute::test::framework::OpenCLClock<false>;