blob: 55d815a1ef7cef18e7b40511c45a6550ae672a3c [file] [log] [blame]
/*
* Copyright (c) 2017-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/operators/ClGemmConv2d.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/gpu/cl/kernels/ClActivationKernel.h"
#include "src/gpu/cl/kernels/ClCol2ImKernel.h"
#include "src/gpu/cl/kernels/ClIm2ColKernel.h"
#include "src/gpu/cl/kernels/ClWeightsReshapeKernel.h"
#include "src/gpu/cl/operators/ClGemm.h"
#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
#include "support/Cast.h"
namespace arm_compute
{
using namespace experimental;
using namespace misc::shape_calculator;
using namespace utils::cast;
namespace opencl
{
ClGemmConv2d::ClGemmConv2d()
: _weights_reshape_kernel(nullptr),
_im2col_kernel(nullptr),
_mm_gemm(nullptr),
_mm_gemmlowp(nullptr),
_col2im_kernel(nullptr),
_activation_kernel(nullptr),
_im2col_output(),
_weights_reshaped(),
_gemm_output(),
_skip_im2col(false),
_skip_col2im(false),
_is_quantized(false),
_fuse_activation(true),
_append_bias(false),
_is_prepared(false),
_aux_mem(AuxTensorIdx::Count)
{
}
ClGemmConv2d::~ClGemmConv2d() = default;
void ClGemmConv2d::configure_mm(const ClCompileContext &compile_context,
const ITensorInfo *src,
ITensorInfo *weights,
ITensorInfo *biases,
ITensorInfo *dst,
const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
int gemm_3d_depth,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
ARM_COMPUTE_ERROR_THROW_ON(
validate_mm(src, weights, biases, dst, gemmlowp_output_stage, gemm_3d_depth, _skip_im2col, act_info));
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
gemm_3d_depth, // depth_output_gemm3d
_skip_im2col, // reinterpret_input_as_3d
false, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
false, // fast_math
false, // fp_mixed_precision
true, // broadcast_bias
act_info // activation_info
);
TensorInfo tmp_src{*src};
if (_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = src->quantization_info();
const QuantizationInfo weights_quantization_info = weights->quantization_info();
tmp_src.set_quantization_info(
QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights->set_quantization_info(
QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
_mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
_mm_gemmlowp->configure(compile_context, &tmp_src, weights, biases, dst, gemm_info);
// Revert back QuantizatioInfo as weights could be used in other convolution layers
weights->set_quantization_info(weights_quantization_info);
auto mm_mem_req = _mm_gemmlowp->workspace();
for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
{
_aux_mem[cont] = mm_mem_req[cont];
}
}
else
{
// Configure matrix multiply function
_mm_gemm = std::make_unique<ClGemm>();
_mm_gemm->configure(compile_context, &tmp_src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
auto mm_mem_req = _mm_gemm->workspace();
for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
{
_aux_mem[cont] = mm_mem_req[cont];
}
}
}
Status ClGemmConv2d::validate_mm(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *dst,
const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
int gemm_3d_depth,
bool skip_im2col,
const ActivationLayerInfo &act_info)
{
const bool is_quantized = is_data_type_quantized_asymmetric(src->data_type());
const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
false, // is_b_reshaped
true, // reshape_b_only_on_first_run
gemm_3d_depth, // depth_output_gemm3d
skip_im2col, // reinterpret_input_as_3d
false, // retain_internal_weights
gemmlowp_output_stage, // gemmlowp_output_stage
false, // fast_math
false, // fp_mixed_precision
true, // broadcast_bias
act_info // activation_info
);
if (is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = src->quantization_info();
const QuantizationInfo weights_quantization_info = weights->quantization_info();
std::unique_ptr<ITensorInfo> src_qa = src->clone();
std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
src_qa->set_quantization_info(
QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights_qa->set_quantization_info(
QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
// Perform validation step on GEMMLowp
return ClGemmLowpMatrixMultiplyCore::validate(src_qa.get(), weights_qa.get(), biases, dst, gemm_info);
}
else
{
// Perform validation step on Matrix multiply function
return ClGemm::validate(src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
}
}
void ClGemmConv2d::configure(const CLCompileContext &compile_context,
ITensorInfo *src,
ITensorInfo *weights,
ITensorInfo *biases,
ITensorInfo *dst,
const Conv2dInfo &conv2d_info,
const WeightsInfo &weights_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_ERROR_THROW_ON(ClGemmConv2d::validate(src, weights, biases, dst, conv2d_info, weights_info));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv2d_info, weights_info);
const DataType data_type = src->data_type();
const DataLayout data_layout = src->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
const unsigned int num_kernels = weights->dimension(idx_kernels);
const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
_is_prepared = weights_info.retain_internal_weights();
_is_quantized = is_data_type_quantized_asymmetric(src->data_type());
_skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 &&
conv2d_info.conv_info.stride().first == 1 && conv2d_info.conv_info.stride().second == 1);
_skip_col2im = data_layout == DataLayout::NHWC;
// Only for quantize there are few cases where we cannot fuse the activation function in GEMM
_fuse_activation = true;
const ITensorInfo *gemm_input_to_use = src;
ITensorInfo *gemm_output_to_use = dst;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv2d_info.conv_info.stride();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
kernel_height, conv2d_info.conv_info, conv2d_info.dilation);
unsigned int mat_weights_cols = num_kernels / conv2d_info.num_groups;
ITensorInfo *biases_to_use = biases;
_append_bias = false;
_weights_reshape_kernel = std::make_unique<kernels::ClWeightsReshapeKernel>();
if (conv2d_info.num_groups != 1 && biases != nullptr)
{
// num_groups != 1 can only be for NCHW
// Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor
biases_to_use = nullptr;
_append_bias = true;
_weights_reshape_kernel->configure(compile_context, weights, biases, &_weights_reshaped,
conv2d_info.num_groups);
}
else
{
_weights_reshape_kernel->configure(compile_context, weights, nullptr, &_weights_reshaped,
conv2d_info.num_groups);
}
// Create tensor to store im2col reshaped inputs
if (!_skip_im2col)
{
// Configure and tune im2col. im2col output shape is auto-initialized
_im2col_kernel = std::make_unique<opencl::kernels::ClIm2ColKernel>();
// Set the GPU target for im2col
_im2col_kernel->set_target(CLScheduler::get().target());
_im2col_kernel->configure(compile_context, src, &_im2col_output, Size2D(kernel_width, kernel_height),
conv2d_info.conv_info, _append_bias, conv2d_info.dilation, conv2d_info.num_groups);
// Set quantization info
_im2col_output.set_quantization_info(src->quantization_info());
CLScheduler::get().tune_kernel_static(*_im2col_kernel);
// Update GEMM input
gemm_input_to_use = &_im2col_output;
}
// Create GEMM output tensor
if (!_skip_col2im)
{
TensorShape shape_gemm;
// If we cannot skip col2im it means we run im2col as well
shape_gemm = _im2col_output.tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
_gemm_output = TensorInfo(shape_gemm, 1, data_type);
_gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
// Update GEMM output
gemm_output_to_use = &_gemm_output;
}
GEMMLowpOutputStageInfo gemmlowp_output_stage;
gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage.gemmlowp_offset = 0;
// Configure output stage for quantized case
if (_is_quantized)
{
const auto output_quant_info = (dst->total_size() == 0) ? iq_info : oq_info;
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type());
const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1;
gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel;
gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters);
gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters);
quantization::compute_quantized_multipliers_and_shifts(src, weights, dst,
gemmlowp_output_stage.gemmlowp_multipliers.data(),
gemmlowp_output_stage.gemmlowp_shifts.data());
gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0];
gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0];
PixelValue min_val{};
PixelValue max_val{};
std::tie(min_val, max_val) = get_min_max(dst->data_type());
auto min_activation = min_val.get<int32_t>();
auto max_activation = max_val.get<int32_t>();
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = {
ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU};
if (conv2d_info.act_info.enabled())
{
if (supported_acts.count(conv2d_info.act_info.activation()) != 0)
{
std::tie(min_activation, max_activation) =
get_quantized_activation_min_max(conv2d_info.act_info, data_type, output_quant_info);
}
else
{
_fuse_activation = false;
}
}
// Set the GEMMLowp output stage info
gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
// Configure and tune GEMM
// In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;
configure_mm(compile_context, gemm_input_to_use, &_weights_reshaped, biases_to_use, gemm_output_to_use,
gemmlowp_output_stage, gemm_3d_depth, conv2d_info.act_info);
if (!_skip_col2im)
{
// Set the GPU target for col2im
_col2im_kernel = std::make_unique<opencl::kernels::ClCol2ImKernel>();
_col2im_kernel->set_target(CLScheduler::get().target());
// Configure and tune Col2Im
_col2im_kernel->configure(compile_context, gemm_output_to_use, dst, Size2D(conv_w, conv_h),
conv2d_info.num_groups);
CLScheduler::get().tune_kernel_static(*_col2im_kernel.get());
}
ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
"Output shape does not match the expected one");
if (!_fuse_activation)
{
_activation_kernel = std::make_unique<opencl::kernels::ClActivationKernel>();
_activation_kernel->configure(compile_context, dst, nullptr, conv2d_info.act_info);
}
_aux_mem[Im2ColOutput] =
MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
_aux_mem[WeightsReshaped] =
MemoryInfo(offset_int_vec(WeightsReshaped), MemoryLifetime::Persistent, _weights_reshaped.total_size());
_aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
}
Status ClGemmConv2d::validate(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *dst,
const Conv2dInfo &conv2d_info,
const WeightsInfo &weights_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::F16, DataType::F32);
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type());
if (!is_quantized_per_channel)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((conv2d_info.num_groups != 1) && (src->data_layout() != DataLayout::NCHW),
"Grouping (num_groups != 1) with NHWC data layout is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((conv2d_info.num_groups != 1) && (src->data_type() == DataType::QASYMM8),
"Grouping (num_groups != 1) is not supported with QASYMM8");
ARM_COMPUTE_RETURN_ERROR_ON(((src->dimension(2) / weights->dimension(2)) != conv2d_info.num_groups) &&
(src->data_layout() == DataLayout::NCHW));
const DataLayout data_layout = src->data_layout();
const DataType data_type = src->data_type();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
const unsigned int num_kernels = weights->dimension(idx_kernels);
TensorInfo im2col_reshaped_info{};
TensorInfo info_gemm{};
TensorInfo weights_reshaped_info{};
const ITensorInfo *gemm_input_to_use = src;
const ITensorInfo *gemm_output_to_use = dst;
const ITensorInfo *weights_to_use = weights;
const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 &&
conv2d_info.conv_info.stride().first == 1 && conv2d_info.conv_info.stride().second == 1);
const bool skip_col2im = data_layout == DataLayout::NHWC;
bool fuse_activation = true;
ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * conv2d_info.num_groups) !=
src->dimension(idx_channel));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
// Validate biases
if (biases != nullptr)
{
if (is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if (conv2d_info.act_info.enabled())
{
ARM_COMPUTE_ERROR_ON(conv2d_info.act_info.b() > conv2d_info.act_info.a());
}
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
kernel_height, conv2d_info.conv_info, conv2d_info.dilation);
unsigned int mat_weights_cols = num_kernels / conv2d_info.num_groups;
const ITensorInfo *biases_to_use = biases;
bool append_bias = false;
if (conv2d_info.num_groups != 1 && biases != nullptr)
{
// num_groups != 1 can only be for NCHW
// Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor
biases_to_use = nullptr;
append_bias = true;
weights_reshaped_info =
TensorInfo(compute_weights_reshaped_shape(*weights, true, conv2d_info.num_groups), 1, data_type);
}
else
{
weights_reshaped_info =
TensorInfo(compute_weights_reshaped_shape(*weights, false, conv2d_info.num_groups), 1, data_type);
}
weights_to_use = &weights_reshaped_info;
if (!skip_im2col)
{
const Size2D kernel_dims(kernel_width, kernel_height);
// Output tensor auto initialization if not yet initialized
TensorShape expected_output_shape =
compute_im2col_conv_shape(src, kernel_dims, conv2d_info.conv_info, append_bias, conv2d_info.dilation,
conv2d_info.num_groups == 1, conv2d_info.num_groups);
auto_init_if_empty(im2col_reshaped_info, src->clone()->set_tensor_shape(expected_output_shape));
ARM_COMPUTE_RETURN_ON_ERROR(
opencl::kernels::ClIm2ColKernel::validate(src, &im2col_reshaped_info, kernel_dims, conv2d_info.conv_info,
append_bias, conv2d_info.dilation, conv2d_info.num_groups));
gemm_input_to_use = &im2col_reshaped_info;
}
// Create GEMM output tensor
if (!skip_col2im)
{
TensorShape shape_gemm;
shape_gemm = gemm_input_to_use->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, conv_w * conv_h);
info_gemm = TensorInfo(shape_gemm, 1, data_type);
info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
gemm_output_to_use = &info_gemm;
}
GEMMLowpOutputStageInfo gemmlowp_output_stage;
gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage.gemmlowp_offset = 0;
gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel;
if (is_quantized)
{
const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
const auto output_quant_info = (dst->total_size() == 0) ? iq_info : oq_info;
const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1;
gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters);
gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters);
quantization::compute_quantized_multipliers_and_shifts(src, weights, dst,
gemmlowp_output_stage.gemmlowp_multipliers.data(),
gemmlowp_output_stage.gemmlowp_shifts.data());
gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0];
gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0];
int min_activation = 0;
int max_activation = 0;
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = {
ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU};
if (conv2d_info.act_info.enabled())
{
if (supported_acts.count(conv2d_info.act_info.activation()) != 0)
{
std::tie(min_activation, max_activation) =
get_quantized_activation_min_max(conv2d_info.act_info, data_type, output_quant_info);
}
else
{
fuse_activation = false;
}
}
// Set the GEMMLowp output stage info
gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
// In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use,
gemmlowp_output_stage, gemm_3d_depth, skip_im2col, conv2d_info.act_info));
// Validate Col2Im
if (!skip_col2im)
{
ARM_COMPUTE_RETURN_ON_ERROR(
kernels::ClCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h), conv2d_info.num_groups));
}
// Validate Activation Layer
if (!fuse_activation)
{
ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClActivationKernel::validate(dst, nullptr, conv2d_info.act_info));
}
return Status{};
}
void ClGemmConv2d::run(ITensorPack &tensors)
{
prepare(tensors);
auto src = tensors.get_const_tensor(ACL_SRC_0);
auto biases = tensors.get_const_tensor(ACL_SRC_2);
auto dst = tensors.get_tensor(ACL_DST);
auto gemm_input_to_use = src;
auto gemm_output_to_use = dst;
CLAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
CLAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);
CLAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false);
// Run im2col
if (!_skip_im2col)
{
ITensorPack pack = {{TensorType::ACL_SRC, src}, {TensorType::ACL_DST, im2col_output.get()}};
CLScheduler::get().enqueue_op(*_im2col_kernel, pack, false);
gemm_input_to_use = im2col_output.get();
}
if (!_skip_col2im)
{
gemm_output_to_use = gemm_output.get();
}
ITensorPack pack_mm = tensors;
pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
pack_mm.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
if (!_append_bias)
{
pack_mm.add_const_tensor(TensorType::ACL_SRC_2, biases);
}
pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
// Runs ClGemm or ClGemmLowpMatrixMultiplyCore functions
if (_is_quantized)
{
// Run gemmlowp
_mm_gemmlowp->run(pack_mm);
}
else
{
// Run gemm
_mm_gemm->run(pack_mm);
}
// Reshape output matrix
if (!_skip_col2im)
{
ITensorPack pack = {{TensorType::ACL_SRC, gemm_output_to_use}, {TensorType::ACL_DST, dst}};
CLScheduler::get().enqueue_op(*_col2im_kernel.get(), pack, false);
}
//Run Activation Layer if we cannot fuse in GEMM
if (!_fuse_activation)
{
ITensorPack pack = {{TensorType::ACL_SRC, dst}, {TensorType::ACL_DST, dst}};
CLScheduler::get().enqueue_op(*_activation_kernel.get(), pack, false);
}
}
void ClGemmConv2d::prepare(ITensorPack &tensors)
{
if (!_is_prepared)
{
// Run weights reshaping and mark original weights tensor as unused
ICLTensor *weights_reshaped_p =
utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(offset_int_vec(WeightsReshaped)));
CLAuxTensorHandler weights_reshaped(_weights_reshaped, *weights_reshaped_p);
auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
ITensorPack pack = {{TensorType::ACL_SRC, weights}, {TensorType::ACL_DST, weights_reshaped.get()}};
if (_append_bias)
{
const auto biases = tensors.get_const_tensor(TensorType::ACL_SRC_2);
pack.add_const_tensor(TensorType::ACL_BIAS, biases);
}
CLScheduler::get().enqueue_op(*_weights_reshape_kernel.get(), pack, true);
tensors.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
// Prepare GEMM
_is_quantized ? _mm_gemmlowp->prepare(tensors) : _mm_gemm->prepare(tensors);
_is_prepared = true;
}
}
experimental::MemoryRequirements ClGemmConv2d::workspace() const
{
return _aux_mem;
}
} // namespace opencl
} // namespace arm_compute