blob: 25a0848977b4ac91d3fac580f191ca876b592698 [file] [log] [blame]
giuros0115ecc9a2018-12-06 10:47:34 +00001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INNEUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY NEAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/NEON/kernels/NEFuseBatchNormalizationKernel.h"
25
26#include "arm_compute/core/TensorInfo.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
29#include "arm_compute/core/Window.h"
30
31#include "arm_compute/core/Helpers.h"
32#include "arm_compute/core/ITensor.h"
33#include "arm_compute/core/TensorInfo.h"
34#include "arm_compute/core/Utils.h"
35#include "arm_compute/core/Window.h"
36
37#include "support/ToolchainSupport.h"
38
39#include "arm_compute/core/NEON/wrapper/wrapper.h"
40#include "utils/TypePrinter.h"
41namespace arm_compute
42{
43namespace
44{
45Status validate_arguments(const ITensorInfo *conv_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var,
46 const ITensorInfo *fused_weights, const ITensorInfo *fused_bias,
47 const ITensorInfo *conv_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma,
48 float epsilon)
49{
50 ARM_COMPUTE_UNUSED(epsilon);
51 //ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(conv_weights);
52 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(conv_weights, 1, DataType::F16, DataType::F32);
53 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var);
54 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_mean, bn_var);
55
56 unsigned int kernels_idx = get_data_layout_dimension_index(conv_weights->data_layout(), DataLayoutDimension::BATCHES);
57 ARM_COMPUTE_RETURN_ERROR_ON(conv_weights->dimension(kernels_idx) != bn_mean->dimension(0));
58
59 // Validate bias
60 if(conv_bias != nullptr)
61 {
62 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, conv_bias);
63 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, conv_bias);
64 }
65 // Validate beta
66 if(bn_beta != nullptr)
67 {
68 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta);
69 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_beta);
70 }
71 // Validate gamma
72 if(bn_gamma != nullptr)
73 {
74 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma);
75 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_gamma);
76 }
77
78 // Validate output weights
79 if(fused_weights != nullptr && fused_weights->total_size() != 0)
80 {
81 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(conv_weights, fused_weights);
82 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(conv_weights, fused_weights);
83 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, fused_weights);
84 }
85 // Validate output bias
86 if(fused_bias != nullptr && fused_bias->total_size() != 0)
87 {
88 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias);
89 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, fused_bias);
90 }
91
92 return Status{};
93}
94
95template <typename ScalarType, int size>
96void fused_batch_normmalization(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
97 const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
98{
99 using ExactTagType = typename wrapper::traits::neon_vector<ScalarType, size>::tag_type;
100
101 const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights);
102 const bool run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias);
103
104 // Set build options
105 Window win = window;
106 win.set(Window::DimX, Window::Dimension(0, 1, 1));
107
108 const int window_step_x = size;
109 const auto window_start_x = static_cast<int>(window.x().start());
110 const auto window_end_x = static_cast<int>(window.x().end());
111
112 Iterator conv_w_in(conv_weights, win);
113 Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win);
114
115 const auto conv_bias_in = (conv_bias != nullptr ? reinterpret_cast<ScalarType *>(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
116 auto conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
117
118 int slice = -1;
119
120 const auto input_mean = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
121 const auto input_var = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
122 const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
123 const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
124
125 auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
126 auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
127 auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{});
128 auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
129 auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
130 const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
131
132 auto mean = ScalarType(0.0);
133 auto var = ScalarType(0.0);
134 auto gamma = ScalarType(1.0);
135 auto beta = ScalarType(0.0);
136 auto conv_bias_in_scalar = ScalarType(0.0);
137 execute_window_loop(win, [&](const Coordinates & id)
138 {
139 if(slice != id[3])
140 {
141 slice = id[3];
142 mean = input_mean[slice];
143 var = input_var[slice];
144 gamma = ScalarType(1.0);
145 beta = ScalarType(0.0);
146
147 // Construct vectors
148 mean_vec = wrapper::vdup_n(mean, ExactTagType{});
149 var_vec = wrapper::vdup_n(var, ExactTagType{});
150 if(input_gamma != nullptr)
151 {
152 gamma = input_gamma[slice];
153 gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
154 }
155 if(input_beta != nullptr)
156 {
157 beta = input_beta[slice];
158 beta_vec = wrapper::vdup_n(beta, ExactTagType{});
159 }
160 if(conv_bias_in != nullptr)
161 {
162 conv_bias_in_scalar = conv_bias_in[slice];
163 }
164 else
165 {
166 conv_bias_in_scalar = ScalarType(0);
167 }
168
169 conv_bias_in_scalar = (conv_bias_in_scalar - mean) / sqrt(var + ScalarType(epsilon));
170 conv_bias_in_scalar = (conv_bias_in_scalar * gamma) + beta;
171 conv_bias_out[slice] = conv_bias_in_scalar;
172 rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
173 }
174
175 int x = window_start_x;
176 auto conv_w_in_ptr = reinterpret_cast<const ScalarType *>(conv_w_in.ptr());
177 auto conv_w_out_ptr = reinterpret_cast<ScalarType *>(conv_w_out.ptr());
178
179 for(; x <= (window_end_x - window_step_x); x += window_step_x)
180 {
181 auto wn = wrapper::vloadq(conv_w_in_ptr + x);
182 wn = wrapper::vmul(wn, rvar_vec);
183 wn = wrapper::vmul(wn, gamma_vec);
184
185 // Store results
186 wrapper::vstore(conv_w_out_ptr + x, wn);
187 }
188
189 // Compute left-over elements
190 for(; x < window_end_x; ++x)
191 {
192 *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / sqrt(var + ScalarType(epsilon)) * gamma;
193 }
194 },
195 conv_w_in, conv_w_out);
196}
197} // namespace
198
199NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel()
200 : _conv_weights(nullptr), _conv_bias(nullptr), _bn_mean(nullptr), _bn_var(nullptr), _bn_gamma(nullptr), _bn_beta(nullptr), _fused_weights(nullptr), _fused_bias(nullptr), _epsilon(),
201 _run_in_place_weights(false), _run_in_place_bias(false), _func(nullptr)
202{
203}
204
205void NEFuseBatchNormalizationKernel::configure(const ITensor *conv_weights, const ITensor *bn_mean, const ITensor *bn_var,
206 ITensor *fused_weights, ITensor *fused_bias,
207 const ITensor *conv_bias, const ITensor *bn_beta, const ITensor *bn_gamma,
208 float epsilon)
209{
210 ARM_COMPUTE_ERROR_ON_NULLPTR(conv_weights, bn_mean, bn_var);
211
212 _conv_weights = conv_weights;
213 _conv_bias = conv_bias;
214 _bn_mean = bn_mean;
215 _bn_var = bn_var;
216 _bn_beta = bn_beta;
217 _bn_gamma = bn_gamma;
218 _fused_weights = fused_weights;
219 _fused_bias = fused_bias;
220 _epsilon = epsilon;
221
222 _run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights);
223 _run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias);
224
225 // Auto initialize outputs
226 if(_fused_weights != nullptr)
227 {
228 // Output tensor auto initialization if not yet initialized
229 auto_init_if_empty(*_fused_weights->info(), *_conv_weights->info()->clone());
230 fused_weights->info()->set_valid_region(conv_weights->info()->valid_region());
231 }
232 if(_fused_bias != nullptr)
233 {
234 // Output tensor auto initialization if not yet initialized
235 auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone());
236 _fused_bias->info()->set_valid_region(bn_mean->info()->valid_region());
237 }
238
239 // Validate arguments
240 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(conv_weights->info(), bn_mean->info(), bn_var->info(),
241 (fused_weights != nullptr) ? fused_weights->info() : nullptr,
242 (fused_bias != nullptr) ? fused_bias->info() : nullptr,
243 (conv_bias != nullptr) ? conv_bias->info() : nullptr,
244 (bn_beta != nullptr) ? bn_beta->info() : nullptr,
245 (bn_gamma != nullptr) ? bn_gamma->info() : nullptr,
246 epsilon));
247
248 // Configure kernel window
249 Window win = calculate_max_window(*conv_weights->info());
250 INEKernel::configure(win);
251
252 // Configure function to run based on different data types
253 const DataType data_type = _conv_weights->info()->data_type();
254 switch(data_type)
255 {
256 case DataType::F32:
257 _func = &fused_batch_normmalization<float, 4>;
258 break;
259#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
260 case DataType::F16:
261 _func = &fused_batch_normmalization<float16_t, 8>;
262 break;
263#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
264 default:
265 ARM_COMPUTE_ERROR("Not Supported");
266 break;
267 }
268}
269
270Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *conv_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var,
271 const ITensorInfo *fused_weights, const ITensorInfo *fused_bias,
272 const ITensorInfo *conv_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma,
273 float epsilon)
274{
275 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(conv_weights, bn_mean, bn_var, fused_weights, fused_bias, conv_bias, bn_beta, bn_gamma, epsilon));
276 return Status{};
277}
278
279void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info)
280{
281 ARM_COMPUTE_UNUSED(info);
282 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
283 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
284 (*_func)(_conv_weights, _conv_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon, window);
285}
286} // namespace arm_compute