blob: 5814965a40e615aacbc95d782b269c56b6b7d54d [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
John Richardson25f23682017-11-27 14:35:09 +00002 * Copyright (c) 2017, 2018 ARM Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef __ARM_COMPUTE_TEST_UTILS_H__
25#define __ARM_COMPUTE_TEST_UTILS_H__
26
27#include "arm_compute/core/Coordinates.h"
28#include "arm_compute/core/Error.h"
29#include "arm_compute/core/FixedPoint.h"
John Richardson25f23682017-11-27 14:35:09 +000030#include "arm_compute/core/HOGInfo.h"
31#include "arm_compute/core/Size2D.h"
Moritz Pflanzerd0ae8b82017-06-29 14:51:57 +010032#include "arm_compute/core/TensorInfo.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010033#include "arm_compute/core/TensorShape.h"
34#include "arm_compute/core/Types.h"
Moritz Pflanzerd0ae8b82017-06-29 14:51:57 +010035#include "support/ToolchainSupport.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010036
Joel Liang1c5ffd62017-12-28 10:09:51 +080037#ifdef ARM_COMPUTE_CL
38#include "arm_compute/core/CL/OpenCL.h"
39#include "arm_compute/runtime/CL/CLScheduler.h"
40#endif /* ARM_COMPUTE_CL */
41
42#ifdef ARM_COMPUTE_GC
43#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
44#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h"
45#endif /* ARM_COMPUTE_GC */
46
Anthony Barbier6ff3b192017-09-04 18:44:23 +010047#include <cmath>
48#include <cstddef>
49#include <limits>
50#include <memory>
SiCong Li3e363692017-07-04 15:02:10 +010051#include <random>
Anthony Barbier6ff3b192017-09-04 18:44:23 +010052#include <sstream>
53#include <string>
54#include <type_traits>
SiCong Li3e363692017-07-04 15:02:10 +010055#include <vector>
Anthony Barbier6ff3b192017-09-04 18:44:23 +010056
57namespace arm_compute
58{
Joel Liang1c5ffd62017-12-28 10:09:51 +080059#ifdef ARM_COMPUTE_CL
60class CLTensor;
61#endif /* ARM_COMPUTE_CL */
Anthony Barbier6ff3b192017-09-04 18:44:23 +010062namespace test
63{
Anthony Barbier6ff3b192017-09-04 18:44:23 +010064/** Round floating-point value with half value rounding to positive infinity.
65 *
66 * @param[in] value floating-point value to be rounded.
67 *
68 * @return Floating-point value of rounded @p value.
69 */
70template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
71inline T round_half_up(T value)
72{
73 return std::floor(value + 0.5f);
74}
75
76/** Round floating-point value with half value rounding to nearest even.
77 *
78 * @param[in] value floating-point value to be rounded.
79 * @param[in] epsilon precision.
80 *
81 * @return Floating-point value of rounded @p value.
82 */
83template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
84inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
85{
86 T positive_value = std::abs(value);
87 T ipart = 0;
88 std::modf(positive_value, &ipart);
89 // If 'value' is exactly halfway between two integers
90 if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
91 {
92 // If 'ipart' is even then return 'ipart'
93 if(std::fmod(ipart, 2.f) < epsilon)
94 {
Moritz Pflanzerd0ae8b82017-06-29 14:51:57 +010095 return support::cpp11::copysign(ipart, value);
Anthony Barbier6ff3b192017-09-04 18:44:23 +010096 }
97 // Else return the nearest even integer
Moritz Pflanzerd0ae8b82017-06-29 14:51:57 +010098 return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
Anthony Barbier6ff3b192017-09-04 18:44:23 +010099 }
100 // Otherwise use the usual round to closest
Moritz Pflanzerd0ae8b82017-06-29 14:51:57 +0100101 return support::cpp11::copysign(support::cpp11::round(positive_value), value);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100102}
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100103
104namespace traits
105{
106// *INDENT-OFF*
107// clang-format off
108template <typename T> struct promote { };
109template <> struct promote<uint8_t> { using type = uint16_t; };
110template <> struct promote<int8_t> { using type = int16_t; };
111template <> struct promote<uint16_t> { using type = uint32_t; };
112template <> struct promote<int16_t> { using type = int32_t; };
113template <> struct promote<uint32_t> { using type = uint64_t; };
114template <> struct promote<int32_t> { using type = int64_t; };
115template <> struct promote<float> { using type = float; };
Georgios Pinitas583137c2017-08-31 18:12:42 +0100116template <> struct promote<half> { using type = half; };
Pablo Tello383deec2017-06-23 10:40:05 +0100117
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100118
119template <typename T>
120using promote_t = typename promote<T>::type;
121
122template <typename T>
123using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
John Richardson3c5f9492017-10-04 15:27:37 +0100124
125template <typename T>
126using make_unsigned_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
127
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100128// clang-format on
129// *INDENT-ON*
130}
131
132/** Look up the format corresponding to a channel.
133 *
134 * @param[in] channel Channel type.
135 *
136 * @return Format that contains the given channel.
137 */
138inline Format get_format_for_channel(Channel channel)
139{
140 switch(channel)
141 {
142 case Channel::R:
143 case Channel::G:
144 case Channel::B:
145 return Format::RGB888;
146 default:
147 throw std::runtime_error("Unsupported channel");
148 }
149}
150
151/** Return the format of a channel.
152 *
153 * @param[in] channel Channel type.
154 *
155 * @return Format of the given channel.
156 */
157inline Format get_channel_format(Channel channel)
158{
159 switch(channel)
160 {
161 case Channel::R:
162 case Channel::G:
163 case Channel::B:
164 return Format::U8;
165 default:
166 throw std::runtime_error("Unsupported channel");
167 }
168}
169
170/** Base case of foldl.
171 *
172 * @return value.
173 */
174template <typename F, typename T>
175inline T foldl(F &&, const T &value)
176{
177 return value;
178}
179
180/** Base case of foldl.
181 *
182 * @return func(value1, value2).
183 */
184template <typename F, typename T, typename U>
185inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
186{
187 return func(value1, value2);
188}
189
190/** Fold left.
191 *
192 * @param[in] func Binary function to be called.
193 * @param[in] initial Initial value.
194 * @param[in] value Argument passed to the function.
195 * @param[in] values Remaining arguments.
196 */
197template <typename F, typename I, typename T, typename... Vs>
198inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
199{
200 return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
201}
202
SiCong Libacaf9a2017-06-19 13:41:45 +0100203/** Create a valid region based on tensor shape, border mode and border size
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100204 *
SiCong Libacaf9a2017-06-19 13:41:45 +0100205 * @param[in] shape Shape used as size of the valid region.
206 * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
207 * @param[in] border_size (Optional) Border size used to specify the region to exclude.
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100208 *
SiCong Libacaf9a2017-06-19 13:41:45 +0100209 * @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
210 * return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100211 */
SiCong Libacaf9a2017-06-19 13:41:45 +0100212inline ValidRegion shape_to_valid_region(TensorShape shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100213{
214 Coordinates anchor;
Moritz Pflanzera1848362017-08-25 12:30:03 +0100215 anchor.set_num_dimensions(shape.num_dimensions());
216
SiCong Libacaf9a2017-06-19 13:41:45 +0100217 if(border_undefined)
218 {
219 ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
Moritz Pflanzera1848362017-08-25 12:30:03 +0100220
SiCong Libacaf9a2017-06-19 13:41:45 +0100221 anchor.set(0, border_size.left);
222 anchor.set(1, border_size.top);
Moritz Pflanzera1848362017-08-25 12:30:03 +0100223
224 const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
225 const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));
226
227 shape.set(0, valid_shape_x);
228 shape.set(1, valid_shape_y);
SiCong Libacaf9a2017-06-19 13:41:45 +0100229 }
Moritz Pflanzera1848362017-08-25 12:30:03 +0100230
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100231 return ValidRegion(std::move(anchor), std::move(shape));
232}
233
Gian Marco37908d92017-11-07 14:38:22 +0000234/** Create a valid region for Gaussian Pyramid Half based on tensor shape and valid region at level "i - 1" and border mode
235 *
236 * @note The border size is 2 in case of Gaussian Pyramid Half
237 *
238 * @param[in] shape Shape used at level "i - 1" of Gaussian Pyramid Half
239 * @param[in] valid_region Valid region used at level "i - 1" of Gaussian Pyramid Half
240 * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
241 *
242 * return The valid region for the level "i" of Gaussian Pyramid Half
243 */
244inline ValidRegion shape_to_valid_region_gaussian_pyramid_half(TensorShape shape, ValidRegion valid_region, bool border_undefined = false)
245{
246 constexpr int border_size = 2;
247 Coordinates anchor;
248 anchor.set_num_dimensions(shape.num_dimensions());
249
250 // Compute tensor shape for level "i" of Gaussian Pyramid Half
251 // dst_width = (src_width + 1) * 0.5f
252 // dst_height = (src_height + 1) * 0.5f
253 TensorShape dst_shape = shape;
254 dst_shape.set(0, (shape[0] + 1) * 0.5f);
255 dst_shape.set(1, (shape[1] + 1) * 0.5f);
256
257 if(border_undefined)
258 {
259 ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
260
261 // Compute the left and top invalid borders
262 float invalid_border_left = static_cast<float>(valid_region.anchor.x() + border_size) / 2.0f;
263 float invalid_border_top = static_cast<float>(valid_region.anchor.y() + border_size) / 2.0f;
264
265 // For the new anchor point we can have 2 cases:
266 // 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (valid_region.anchor.x() + border_size) / 2.0f or (valid_region.anchor.y() + border_size / 2.0f
267 // 2) If the width/height of the tensor shape is even, we have to take the floor value of (valid_region.anchor.x() + border_size) / 2.0f or (valid_region.anchor.y() + border_size) / 2.0f
268 // In this manner we should be able to propagate correctly the valid region along all levels of the pyramid
269 invalid_border_left = (shape[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left);
270 invalid_border_top = (shape[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top);
271
272 // Set the anchor point
273 anchor.set(0, static_cast<int>(invalid_border_left));
274 anchor.set(1, static_cast<int>(invalid_border_top));
275
276 // Compute shape
277 // Calculate the right and bottom invalid borders at the previous level of the pyramid
278 const float prev_invalid_border_right = static_cast<float>(shape[0] - (valid_region.anchor.x() + valid_region.shape[0]));
279 const float prev_invalid_border_bottom = static_cast<float>(shape[1] - (valid_region.anchor.y() + valid_region.shape[1]));
280
281 // Calculate the right and bottom invalid borders at the current level of the pyramid
282 const float invalid_border_right = std::ceil((prev_invalid_border_right + static_cast<float>(border_size)) / 2.0f);
283 const float invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast<float>(border_size)) / 2.0f);
284
285 const int valid_shape_x = std::max(0, static_cast<int>(dst_shape.x()) - static_cast<int>(invalid_border_left) - static_cast<int>(invalid_border_right));
286 const int valid_shape_y = std::max(0, static_cast<int>(dst_shape.y()) - static_cast<int>(invalid_border_top) - static_cast<int>(invalid_border_bottom));
287
288 dst_shape.set(0, valid_shape_x);
289 dst_shape.set(1, valid_shape_y);
290 }
291
292 return ValidRegion(std::move(anchor), std::move(dst_shape));
293}
294
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100295/** Write the value after casting the pointer according to @p data_type.
296 *
297 * @warning The type of the value must match the specified data type.
298 *
299 * @param[out] ptr Pointer to memory where the @p value will be written.
300 * @param[in] value Value that will be written.
301 * @param[in] data_type Data type that will be written.
302 */
303template <typename T>
304void store_value_with_data_type(void *ptr, T value, DataType data_type)
305{
306 switch(data_type)
307 {
308 case DataType::U8:
Chunosovd621bca2017-11-03 17:33:15 +0700309 case DataType::QASYMM8:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100310 *reinterpret_cast<uint8_t *>(ptr) = value;
311 break;
312 case DataType::S8:
313 case DataType::QS8:
314 *reinterpret_cast<int8_t *>(ptr) = value;
315 break;
316 case DataType::U16:
317 *reinterpret_cast<uint16_t *>(ptr) = value;
318 break;
319 case DataType::S16:
Michalis Spyrou0a8334c2017-06-14 18:00:05 +0100320 case DataType::QS16:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100321 *reinterpret_cast<int16_t *>(ptr) = value;
322 break;
323 case DataType::U32:
324 *reinterpret_cast<uint32_t *>(ptr) = value;
325 break;
326 case DataType::S32:
327 *reinterpret_cast<int32_t *>(ptr) = value;
328 break;
329 case DataType::U64:
330 *reinterpret_cast<uint64_t *>(ptr) = value;
331 break;
332 case DataType::S64:
333 *reinterpret_cast<int64_t *>(ptr) = value;
334 break;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100335 case DataType::F16:
Georgios Pinitas583137c2017-08-31 18:12:42 +0100336 *reinterpret_cast<half *>(ptr) = value;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100337 break;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100338 case DataType::F32:
339 *reinterpret_cast<float *>(ptr) = value;
340 break;
341 case DataType::F64:
342 *reinterpret_cast<double *>(ptr) = value;
343 break;
344 case DataType::SIZET:
345 *reinterpret_cast<size_t *>(ptr) = value;
346 break;
347 default:
348 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
349 }
350}
351
352/** Saturate a value of type T against the numeric limits of type U.
353 *
354 * @param[in] val Value to be saturated.
355 *
356 * @return saturated value.
357 */
358template <typename U, typename T>
359T saturate_cast(T val)
360{
361 if(val > static_cast<T>(std::numeric_limits<U>::max()))
362 {
363 val = static_cast<T>(std::numeric_limits<U>::max());
364 }
365 if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
366 {
367 val = static_cast<T>(std::numeric_limits<U>::lowest());
368 }
369 return val;
370}
371
372/** Find the signed promoted common type.
373 */
374template <typename... T>
375struct common_promoted_signed_type
376{
377 using common_type = typename std::common_type<T...>::type;
378 using promoted_type = traits::promote_t<common_type>;
379 using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
380};
381
John Richardson3c5f9492017-10-04 15:27:37 +0100382/** Find the unsigned promoted common type.
383 */
384template <typename... T>
385struct common_promoted_unsigned_type
386{
387 using common_type = typename std::common_type<T...>::type;
388 using promoted_type = traits::promote_t<common_type>;
389 using intermediate_type = typename traits::make_unsigned_conditional_t<promoted_type>::type;
390};
391
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100392/** Convert a linear index into n-dimensional coordinates.
393 *
394 * @param[in] shape Shape of the n-dimensional tensor.
395 * @param[in] index Linear index specifying the i-th element.
396 *
397 * @return n-dimensional coordinates.
398 */
399inline Coordinates index2coord(const TensorShape &shape, int index)
400{
401 int num_elements = shape.total_size();
402
403 ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
404 ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");
405
406 Coordinates coord{ 0 };
407
408 for(int d = shape.num_dimensions() - 1; d >= 0; --d)
409 {
410 num_elements /= shape[d];
411 coord.set(d, index / num_elements);
412 index %= num_elements;
413 }
414
415 return coord;
416}
417
418/** Linearise the given coordinate.
419 *
420 * Transforms the given coordinate into a linear offset in terms of
421 * elements.
422 *
423 * @param[in] shape Shape of the n-dimensional tensor.
424 * @param[in] coord The to be converted coordinate.
425 *
426 * @return Linear offset to the element.
427 */
428inline int coord2index(const TensorShape &shape, const Coordinates &coord)
429{
430 ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
431 ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");
432
433 int index = 0;
434 int dim_size = 1;
435
436 for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
437 {
438 index += coord[i] * dim_size;
439 dim_size *= shape[i];
440 }
441
442 return index;
443}
444
445/** Check if a coordinate is within a valid region */
Moritz Pflanzera1848362017-08-25 12:30:03 +0100446inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100447{
Moritz Pflanzer219c6912017-09-23 19:22:51 +0100448 for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
Moritz Pflanzera1848362017-08-25 12:30:03 +0100449 {
450 if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100451 {
452 return false;
453 }
454 }
Moritz Pflanzera1848362017-08-25 12:30:03 +0100455
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100456 return true;
457}
Moritz Pflanzer94450f12017-06-30 12:48:43 +0100458
459/** Create and initialize a tensor of the given type.
460 *
461 * @param[in] shape Tensor shape.
462 * @param[in] data_type Data type.
463 * @param[in] num_channels (Optional) Number of channels.
464 * @param[in] fixed_point_position (Optional) Number of fractional bits.
Chunosovd621bca2017-11-03 17:33:15 +0700465 * @param[in] quantization_info (Optional) Quantization info for asymmetric quantized types.
Moritz Pflanzer94450f12017-06-30 12:48:43 +0100466 *
467 * @return Initialized tensor of given type.
468 */
469template <typename T>
Chunosovd621bca2017-11-03 17:33:15 +0700470inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1,
471 int fixed_point_position = 0, QuantizationInfo quantization_info = QuantizationInfo())
Moritz Pflanzer94450f12017-06-30 12:48:43 +0100472{
Chunosovd621bca2017-11-03 17:33:15 +0700473 T tensor;
474 TensorInfo info(shape, num_channels, data_type, fixed_point_position);
475 info.set_quantization_info(quantization_info);
476 tensor.allocator()->init(info);
Moritz Pflanzer94450f12017-06-30 12:48:43 +0100477
478 return tensor;
479}
SiCong Li3e363692017-07-04 15:02:10 +0100480
Ioan-Cristian Szabo2c350182017-12-20 16:27:37 +0000481/** Create and initialize a tensor of the given type.
482 *
483 * @param[in] shape Tensor shape.
484 * @param[in] format Format type.
485 *
486 * @return Initialized tensor of given type.
487 */
488template <typename T>
489inline T create_tensor(const TensorShape &shape, Format format)
490{
491 TensorInfo info(shape, format);
492
493 T tensor;
494 tensor.allocator()->init(info);
495
496 return tensor;
497}
498
John Richardson25f23682017-11-27 14:35:09 +0000499/** Create and initialize a HOG (Histogram of Oriented Gradients) of the given type.
500 *
501 * @param[in] cell_size Cell size in pixels
502 * @param[in] block_size Block size in pixels. Must be a multiple of cell_size.
503 * @param[in] detection_window_size Detection window size in pixels. Must be a multiple of block_size and block_stride.
504 * @param[in] block_stride Distance in pixels between 2 consecutive blocks along the x and y direction. Must be a multiple of cell size
505 * @param[in] num_bins Number of histogram bins for each cell
506 * @param[in] normalization_type (Optional) Normalization type to use for each block
507 * @param[in] l2_hyst_threshold (Optional) Threshold used for L2HYS_NORM normalization method
508 * @param[in] phase_type (Optional) Type of @ref PhaseType
509 *
510 * @return Initialized HOG of given type.
511 */
512template <typename T>
513inline T create_HOG(const Size2D &cell_size, const Size2D &block_size, const Size2D &detection_window_size, const Size2D &block_stride, size_t num_bins,
514 HOGNormType normalization_type = HOGNormType::L2HYS_NORM, float l2_hyst_threshold = 0.2f, PhaseType phase_type = PhaseType::UNSIGNED)
515{
516 T hog;
517 HOGInfo hog_info(cell_size, block_size, block_size, block_stride, num_bins, normalization_type, l2_hyst_threshold, phase_type);
518 hog.init(hog_info);
519
520 return hog;
521}
522
SiCong Li3e363692017-07-04 15:02:10 +0100523/** Create a vector of random ROIs.
524 *
525 * @param[in] shape The shape of the input tensor.
526 * @param[in] pool_info The ROI pooling information.
527 * @param[in] num_rois The number of ROIs to be created.
528 * @param[in] seed The random seed to be used.
529 *
530 * @return A vector that contains the requested number of random ROIs
531 */
532inline std::vector<ROI> generate_random_rois(const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, unsigned int num_rois, std::random_device::result_type seed)
533{
534 ARM_COMPUTE_ERROR_ON((pool_info.pooled_width() < 4) || (pool_info.pooled_height() < 4));
535
536 std::vector<ROI> rois;
537 std::mt19937 gen(seed);
538 const int pool_width = pool_info.pooled_width();
539 const int pool_height = pool_info.pooled_height();
540 const float roi_scale = pool_info.spatial_scale();
541
542 // Calculate distribution bounds
543 const auto scaled_width = static_cast<int>((shape.x() / roi_scale) / pool_width);
544 const auto scaled_height = static_cast<int>((shape.y() / roi_scale) / pool_height);
545 const auto min_width = static_cast<int>(pool_width / roi_scale);
546 const auto min_height = static_cast<int>(pool_height / roi_scale);
547
548 // Create distributions
549 std::uniform_int_distribution<int> dist_batch(0, shape[3] - 1);
550 std::uniform_int_distribution<int> dist_x(0, scaled_width);
551 std::uniform_int_distribution<int> dist_y(0, scaled_height);
552 std::uniform_int_distribution<int> dist_w(min_width, std::max(min_width, (pool_width - 2) * scaled_width));
553 std::uniform_int_distribution<int> dist_h(min_height, std::max(min_height, (pool_height - 2) * scaled_height));
554
555 for(unsigned int r = 0; r < num_rois; ++r)
556 {
557 ROI roi;
558 roi.batch_idx = dist_batch(gen);
559 roi.rect.x = dist_x(gen);
560 roi.rect.y = dist_y(gen);
561 roi.rect.width = dist_w(gen);
562 roi.rect.height = dist_h(gen);
563 rois.push_back(roi);
564 }
565
566 return rois;
567}
568
569template <typename T, typename ArrayAccessor_T>
570inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
571{
572 array.resize(v.size());
573 std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
574}
SiCong Li86b53332017-08-23 11:02:43 +0100575
576/** Obtain numpy type string from DataType.
577 *
578 * @param[in] data_type Data type.
579 *
580 * @return numpy type string.
581 */
582inline std::string get_typestring(DataType data_type)
583{
584 // Check endianness
585 const unsigned int i = 1;
586 const char *c = reinterpret_cast<const char *>(&i);
587 std::string endianness;
588 if(*c == 1)
589 {
590 endianness = std::string("<");
591 }
592 else
593 {
594 endianness = std::string(">");
595 }
596 const std::string no_endianness("|");
597
598 switch(data_type)
599 {
600 case DataType::U8:
601 return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
602 case DataType::S8:
603 return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
604 case DataType::U16:
605 return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
606 case DataType::S16:
607 return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
608 case DataType::U32:
609 return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
610 case DataType::S32:
611 return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
612 case DataType::U64:
613 return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
614 case DataType::S64:
615 return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
616 case DataType::F32:
617 return endianness + "f" + support::cpp11::to_string(sizeof(float));
618 case DataType::F64:
619 return endianness + "f" + support::cpp11::to_string(sizeof(double));
620 case DataType::SIZET:
621 return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
622 default:
623 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
624 }
625}
Joel Liang1c5ffd62017-12-28 10:09:51 +0800626
627/** Sync if necessary.
628 */
629template <typename TensorType>
630inline void sync_if_necessary()
631{
632#ifdef ARM_COMPUTE_CL
633 if(opencl_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::CLTensor>::value)
634 {
635 CLScheduler::get().sync();
636 }
637#endif /* ARM_COMPUTE_CL */
638}
639
640/** Sync tensor if necessary.
641 *
642 * @note: If the destination tensor not being used on OpenGL ES, GPU will optimize out the operation.
643 *
644 * @param[in] tensor Tensor to be sync.
645 */
646template <typename TensorType>
647inline void sync_tensor_if_necessary(TensorType &tensor)
648{
649#ifdef ARM_COMPUTE_GC
650 if(opengles31_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::GCTensor>::value)
651 {
652 // Force sync the tensor by calling map and unmap.
653 IGCTensor &t = dynamic_cast<IGCTensor &>(tensor);
654 t.map();
655 t.unmap();
656 }
657#endif /* ARM_COMPUTE_GC */
658}
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100659} // namespace test
660} // namespace arm_compute
Anthony Barbierac69aa12017-07-03 17:39:37 +0100661#endif /* __ARM_COMPUTE_TEST_UTILS_H__ */