blob: 604e25214bfe827ca964d3348d59b705174656c5 [file] [log] [blame]
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +00001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "Winograd.h"
25
26#include "tests/validation/Helpers.h"
27#include "tests/validation/reference/Utils.h"
28
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +000029#include "arm_compute/core/Types.h"
30
Gian Marco Iodice247f52c2018-03-22 11:24:56 +000031#include <algorithm>
32
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +000033namespace arm_compute
34{
35namespace test
36{
37namespace validation
38{
39namespace reference
40{
41namespace
42{
43template <typename T>
Gian Marco Iodice247f52c2018-03-22 11:24:56 +000044void initialize_matrix_transform(SimpleTensor<T> &src, const Size2D &output_tile_size, const Size2D &kernel_size, WinogradTransformType winograd_transform_type)
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +000045{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +000046 ARM_COMPUTE_ERROR_ON((output_tile_size != Size2D(2U, 2U)) && (output_tile_size != Size2D(4U, 4U)));
47 ARM_COMPUTE_ERROR_ON(kernel_size != Size2D(3U, 3U));
Giorgio Arena2d9de0a2018-03-15 17:58:20 +000048
Gian Marco Iodice247f52c2018-03-22 11:24:56 +000049 // Winograd input transform matrices
50 static const float imatrix2x2_3x3[] =
Giorgio Arena2d9de0a2018-03-15 17:58:20 +000051 {
Gian Marco Iodice247f52c2018-03-22 11:24:56 +000052 1.0f, 0.0f, -1.0f, 0.0f,
53 0.0f, 1.0f, 1.0f, 0.0f,
54 0.0f, -1.0f, 1.0f, 0.0f,
55 0.0f, 1.0f, 0.0f, -1.0f
56 };
57
58 static const float imatrix4x4_3x3[] =
59 {
60 4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f,
61 0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f,
62 0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f,
63 0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f,
64 0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f,
65 0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f,
66 };
67
68 // ------------------------------------------
69
70 // Winograd filter transform matrices
71 static const float fmatrix2x2_3x3[] =
72 {
73 1.0f, 0.0f, 0.0f,
74 0.5f, 0.5f, 0.5f,
75 0.5f, -0.5f, 0.5f,
76 0.0f, 0.0f, 1.0f
77 };
78
79 static const float fmatrix4x4_3x3[] =
80 {
81 0.25f, 0.0f, 0.0f,
82 -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f,
83 -1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f,
84 1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f,
85 1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f,
86 0.0f, 0.0f, 1.0f
87 };
88
89 // ------------------------------------------
90
91 // Winograd output transform matrices
92 static const float omatrix2x2_3x3[] =
93 {
94 1.0f, 1.0f, 1.0f, 0.0f,
95 0.0f, 1.0f, -1.0f, -1.0f
96 };
97
98 static const float omatrix4x4_3x3[] =
99 {
100 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
101 0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f,
102 0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f,
103 0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f
104 };
105
106 // ------------------------------------------
107
108 using WinogradKey = std::tuple<std::pair<int, int>, std::pair<int, int>, WinogradTransformType>;
109
110 // Key = (Output tile size, Kernel size, Winograd transform type)
111 static std::map<WinogradKey, const float *> matrix_map =
112 {
113 { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix2x2_3x3 },
114 { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix4x4_3x3 },
115 { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3 },
116 { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3 },
117 { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3 },
118 { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3 },
119 };
120
121 // Find input matrix transform
122 std::map<WinogradKey, const float *>::iterator it;
123
124 it = matrix_map.find(WinogradKey(std::pair<int, int>(output_tile_size.width, output_tile_size.height),
125 std::pair<int, int>(kernel_size.width, kernel_size.height),
126 winograd_transform_type));
127
128 float const *matrix_values = nullptr;
129 if(it != matrix_map.end())
130 {
131 // Get matrix pointer
132 matrix_values = it->second;
Giorgio Arena2d9de0a2018-03-15 17:58:20 +0000133 }
134 else
135 {
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000136 ARM_COMPUTE_ERROR("Winograd configuration not supported");
Giorgio Arena2d9de0a2018-03-15 17:58:20 +0000137 }
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000138
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000139 // Copy values
140 std::copy(&matrix_values[0], &matrix_values[0] + src.num_elements(), &src[0]);
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000141}
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000142} // namespace
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000143
144template <typename T>
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000145SimpleTensor<T> winograd_input_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000146{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000147 ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NCHW);
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000148
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000149 const PadStrideInfo conv_info = winograd_info.convolution_info;
150 const Size2D output_tile_size = winograd_info.output_tile_size;
151 const Size2D kernel_size = winograd_info.kernel_size;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000152
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000153 SimpleTensor<T> out{ output_shape, in.data_type() };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000154
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000155 // Calculate dimensions for the tile
156 const unsigned int tile_w = output_tile_size.width + kernel_size.width - 1;
157 const unsigned int tile_h = output_tile_size.height + kernel_size.height - 1;
158
159 TensorShape tile_dims(tile_w, tile_h);
160
161 // Simple tensor for the input tile
162 SimpleTensor<T> src_tile{ tile_dims, in.data_type() };
163
164 // Simple tensor for the temporary tile
165 SimpleTensor<T> tmp_tile{ tile_dims, in.data_type() };
166
167 // Simple tensor for the output tile
168 SimpleTensor<T> dst_tile{ tile_dims, in.data_type() };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000169
170 // Simple tensor for the transformation matrix
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000171 SimpleTensor<T> matrix{ tile_dims, in.data_type() };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000172
173 // Simple tensor for the transformation matrix transposed
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000174 SimpleTensor<T> matrix_transposed{ tile_dims, in.data_type() };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000175
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000176 // Initialize matrix for the input transform
177 initialize_matrix_transform(matrix, output_tile_size, kernel_size, WinogradTransformType::INPUT);
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000178
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000179 // Transpose matrix
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000180 transpose_matrix(matrix, matrix_transposed);
181
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000182 const int in_w = in.shape().x();
183 const int in_h = in.shape().y();
184 const int in_d = in.shape().z();
185 const int out_d = out.shape().z();
186 const int num_batches = in.shape().total_size() / (in_w * in_h * in_d);
187 const int num_tiles_x = std::ceil((in_w - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
188 const int num_tiles_y = std::ceil((in_h - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
189 const int step_x = output_tile_size.width;
190 const int step_y = output_tile_size.height;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000191
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000192 ARM_COMPUTE_ERROR_ON((num_tiles_x * num_tiles_y) != static_cast<int>(out.shape().y()));
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000193
194 for(int b = 0; b < num_batches; ++b)
195 {
196 for(int z = 0; z < in_d; ++z)
197 {
198 for(int y = 0; y < num_tiles_y; ++y)
199 {
200 for(int x = 0; x < num_tiles_x; ++x)
201 {
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000202 int xi = x * step_x - conv_info.pad_left();
203 int yi = y * step_y - conv_info.pad_top();
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000204
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000205 // Get the tile from the input tensor
206 get_tile(in, src_tile, Coordinates(xi, yi, z, b));
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000207
208 // Compute the transformation
209 matrix_multiply(matrix, src_tile, tmp_tile);
210 matrix_multiply(tmp_tile, matrix_transposed, dst_tile);
211
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000212 // Store the output tile across the channels
213 for(int i = 0; i < out_d; ++i)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000214 {
215 int xo = z;
216 int yo = x + y * num_tiles_x;
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000217 out[coords2index(out.shape(), Coordinates(xo, yo, i, b))] = dst_tile[i];
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000218 }
219 }
220 }
221 }
222 }
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000223
224 return out;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000225}
226
227template <typename T>
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000228SimpleTensor<T> winograd_filter_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000229{
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000230 ARM_COMPUTE_ERROR_ON_MSG(in.data_layout() != DataLayout::NCHW, "Only supported NCHW data format");
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000231
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000232 // Create reference
233 SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
234
235 const Size2D output_tile_size = winograd_info.output_tile_size;
236 const Size2D kernel_size = winograd_info.kernel_size;
237
238 TensorShape kernel_tile_dims(kernel_size.width, kernel_size.height);
239
240 // Calculate dimensions for the tile
241 const unsigned int input_tile_w = output_tile_size.width + kernel_size.width - 1;
242 const unsigned int input_tile_h = output_tile_size.height + kernel_size.height - 1;
243 const unsigned int input_tile_area = input_tile_w * input_tile_h;
244
245 // Simple tensor for the input tile
246 SimpleTensor<T> input_tile{ kernel_tile_dims, in.data_type(), 1 };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000247
248 // Simple tensor for the transformation matrix
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000249 SimpleTensor<T> trans_matrix{ TensorShape(kernel_tile_dims[0], input_tile_w), in.data_type(), 1 };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000250
251 // Simple tensor for the transformation matrix transpose
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000252 SimpleTensor<T> trans_matrix_transposed{ TensorShape(input_tile_w, kernel_tile_dims[0]), in.data_type(), 1 };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000253
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000254 // Simple tensor for the temporary tile
255 SimpleTensor<T> tmp_tile{ TensorShape(kernel_tile_dims[0], input_tile_w), in.data_type(), 1 };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000256
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000257 // Simple tensor for the output tile
258 SimpleTensor<T> transf_tile{ TensorShape(input_tile_w, input_tile_w), in.data_type(), 1 };
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000259
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000260 // Initialize matrix for the filter transform
261 initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::FILTER);
262
263 // Transpose the transformation matrix
264 transpose_matrix(trans_matrix, trans_matrix_transposed);
265
266 const int num_channels = in.shape()[2];
267 const int num_filters = in.shape()[3];
268 const int num_batches = in.shape().total_size() / (kernel_size.area() * num_channels * num_filters);
269
270 for(int n = 0; n < num_batches; ++n)
271 {
272 for(int w = 0; w < num_filters; ++w)
273 {
274 for(int z = 0; z < num_channels; ++z)
275 {
276 // Load the tile from the input tensor
277 get_tile(in, input_tile, Coordinates(0, 0, z, w, n));
278
279 // First transformation
280 matrix_multiply(trans_matrix, input_tile, tmp_tile);
281
282 // Second transformation
283 matrix_multiply(tmp_tile, trans_matrix_transposed, transf_tile);
284
285 // Store the output tile across the channels
286 const int output_offset = w + z * num_filters;
287
288 // Store the values across the channels
289 for(unsigned int i = 0; i < input_tile_area; ++i)
290 {
291 out[output_offset + i * num_filters * num_channels] = transf_tile[i];
292 }
293 }
294 }
295 }
296
297 return out;
298}
299
300template <typename T>
301SimpleTensor<T> winograd_output_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
302{
303 ARM_COMPUTE_ERROR_ON_MSG(winograd_info.output_data_layout != DataLayout::NCHW, "Only supported NCHW data format");
304
305 const PadStrideInfo conv_info = winograd_info.convolution_info;
306 const Size2D input_dimensions = winograd_info.input_dimensions;
307 const Size2D output_tile_size = winograd_info.output_tile_size;
308 const Size2D kernel_size = winograd_info.kernel_size;
309
310 // Create reference
311 SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
312
313 // Calculate dimensions for the tiles
314 const unsigned int in_tile_w = output_tile_size.width + kernel_size.width - 1;
315 const unsigned int in_tile_h = output_tile_size.height + kernel_size.height - 1;
316 const unsigned int out_tile_w = output_tile_size.width;
317 const unsigned int out_tile_h = output_tile_size.height;
318
319 ARM_COMPUTE_ERROR_ON(in.shape()[2] != (in_tile_w * in_tile_h));
320 ARM_COMPUTE_ERROR_ON(in.shape()[0] != out.shape()[2]);
321
322 // Compute tile dimensions
323 // Input tile dimensions
324 TensorShape in_tile_dims(in_tile_w, in_tile_h);
325
326 // Output tile dimensions
327 TensorShape out_tile_dims(output_tile_size.width, output_tile_size.height);
328
329 // Transformation matrix dimensions
330 TensorShape tr_tile_dims(in_tile_w, output_tile_size.width);
331
332 // Create tensors
333 // Simple tensor for the input tile
334 SimpleTensor<T> input_tile{ in_tile_dims, in.data_type(), 1 };
335
336 // Simple tensor for the transformation matrix
337 SimpleTensor<T> trans_matrix{ tr_tile_dims, in.data_type(), 1 };
338
339 // Simple tensor for the transformation matrix transpose
340 SimpleTensor<T> trans_matrix_transposed{ TensorShape(tr_tile_dims[1], tr_tile_dims[0]), in.data_type(), 1 };
341
342 // Simple tensor for the temporary tile
343 SimpleTensor<T> tmp_tile{ tr_tile_dims, in.data_type(), 1 };
344
345 // Simple tensor for the output tile
346 SimpleTensor<T> output_tile{ out_tile_dims, in.data_type(), 1 };
347
348 // Initialize matrix for the output transform
349 initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::OUTPUT);
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000350
351 // Transpose the transformation matrix
352 transpose_matrix(trans_matrix, trans_matrix_transposed);
353
354 const int w_in = in.shape()[0];
355 const int h_in = in.shape()[1];
356 const int c_in = in.shape()[2];
357 const int w_out = out.shape()[0];
358 const int h_out = out.shape()[1];
359 const int c_out = out.shape()[2];
360 const int num_batches = in.shape().total_size() / (w_in * h_in * c_in);
361
362 // Input strides
363 const int stridey_in = w_in;
364 const int stridez_in = stridey_in * h_in;
365 const int stridew_in = stridez_in * c_in;
366
367 // Output strides
368 const int stridey_out = w_out;
369 const int stridez_out = stridey_out * h_out;
370 const int stridew_out = stridez_out * c_out;
371
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000372 // Compute number of elements to process in the X and Y direction
373 const int num_elements_x = input_dimensions.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right();
374 const int num_elements_y = input_dimensions.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom();
375 const int num_tiles_x = std::ceil(num_elements_x / static_cast<float>(output_tile_size.width));
376 const int num_tiles_y = std::ceil(num_elements_y / static_cast<float>(output_tile_size.height));
377
378 ARM_COMPUTE_UNUSED(num_tiles_y);
379 ARM_COMPUTE_ERROR_ON(in.shape()[1] != static_cast<unsigned int>(num_tiles_x * num_tiles_y));
380
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000381 for(int n = 0; n < num_batches; ++n)
382 {
383 for(int y = 0; y < h_in; ++y)
384 {
385 for(int x = 0; x < w_in; ++x)
386 {
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000387 // Load the input tile tile across the channels of the input tensor
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000388 for(int z = 0; z < c_in; ++z)
389 {
390 input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)];
391 }
392
393 // First transformation
394 matrix_multiply(trans_matrix, input_tile, tmp_tile);
395
396 // Second transformation
397 matrix_multiply(tmp_tile, trans_matrix_transposed, output_tile);
398
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000399 // Store the output tile
400 const int xo = (y % num_tiles_x) * out_tile_w;
401 const int yo = (y / num_tiles_x) * out_tile_h;
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000402 const int zo = x;
403
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000404 const int output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out);
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000405
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000406 for(int yi = 0; yi < static_cast<int>(out_tile_h); ++yi)
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000407 {
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000408 for(int xi = 0; xi < static_cast<int>(out_tile_w); ++xi)
409 {
410 // Check out-of-bound writes
411 if((xo + xi < w_out) && (yo + yi < h_out))
412 {
413 out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * out_tile_w];
414 }
415 }
Gian Marco Iodiced2fab732018-03-02 11:18:12 +0000416 }
417 }
418 }
419 }
Gian Marco Iodice7e4b2392018-02-22 16:17:20 +0000420
421 return out;
422}
423
Gian Marco Iodice247f52c2018-03-22 11:24:56 +0000424template SimpleTensor<float> winograd_filter_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
425template SimpleTensor<float> winograd_input_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
426template SimpleTensor<float> winograd_output_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000427} // namespace reference
428} // namespace validation
429} // namespace test
430} // namespace arm_compute