blob: 1d900291472eabbe2d2e0dc49930654b79ec2a28 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
2 * Copyright (c) 2016, 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25namespace arm_compute
26{
27/* Exponent polynomial coefficients */
28const std::array<float32x4_t, 8> exp_tab =
29{
30 {
31 vdupq_n_f32(1.f),
32 vdupq_n_f32(0.0416598916054f),
33 vdupq_n_f32(0.500000596046f),
34 vdupq_n_f32(0.0014122662833f),
35 vdupq_n_f32(1.00000011921f),
36 vdupq_n_f32(0.00833693705499f),
37 vdupq_n_f32(0.166665703058f),
38 vdupq_n_f32(0.000195780929062f),
39 }
40};
41
42/* Logarithm polynomial coefficients */
43const std::array<float32x4_t, 8> log_tab =
44{
45 {
46 vdupq_n_f32(-2.29561495781f),
47 vdupq_n_f32(-2.47071170807f),
48 vdupq_n_f32(-5.68692588806f),
49 vdupq_n_f32(-0.165253549814f),
50 vdupq_n_f32(5.17591238022f),
51 vdupq_n_f32(0.844007015228f),
52 vdupq_n_f32(4.58445882797f),
53 vdupq_n_f32(0.0141278216615f),
54 }
55};
56
57inline float32x4_t vinvsqrtq_f32(float32x4_t x)
58{
59 float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
60 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
61 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
62
63 return sqrt_reciprocal;
64}
65
66inline float32x4_t vinvq_f32(float32x4_t x)
67{
68 float32x4_t recip = vrecpeq_f32(x);
69 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
70 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
71 return recip;
72}
73
74inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
75{
76 float32x4_t A = vmlaq_f32(coeffs[0], coeffs[4], x);
77 float32x4_t B = vmlaq_f32(coeffs[2], coeffs[6], x);
78 float32x4_t C = vmlaq_f32(coeffs[1], coeffs[5], x);
79 float32x4_t D = vmlaq_f32(coeffs[3], coeffs[7], x);
80 float32x4_t x2 = vmulq_f32(x, x);
81 float32x4_t x4 = vmulq_f32(x2, x2);
82 float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
83 return res;
84}
85
86inline float32x4_t vexpq_f32(float32x4_t x)
87{
Georgios Pinitasee122542017-06-26 15:54:06 +010088 static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
89 static const float32x4_t CONST_INV_LN2 = vdupq_n_f32(1.4426950408f); // 1/ln(2)
90 static const float32x4_t CONST_0 = vdupq_n_f32(0.f);
91 static const int32x4_t CONST_NEGATIVE_126 = vdupq_n_s32(-126);
Anthony Barbier6ff3b192017-09-04 18:44:23 +010092
93 // Perform range reduction [-log(2),log(2)]
94 int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, CONST_INV_LN2));
95 float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), CONST_LN2);
96
97 // Polynomial Approximation
98 float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
99
100 // Reconstruct
Georgios Pinitasee122542017-06-26 15:54:06 +0100101 poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
102 poly = vbslq_f32(vcltq_s32(m, CONST_NEGATIVE_126), CONST_0, poly);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100103
104 return poly;
105}
106
107inline float32x4_t vlogq_f32(float32x4_t x)
108{
109 static const int32x4_t CONST_127 = vdupq_n_s32(127); // 127
110 static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
111
112 // Extract exponent
113 int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
114 float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
115
116 // Polynomial Approximation
117 float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
118
119 // Reconstruct
120 poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
121
122 return poly;
123}
124
125inline float32x4_t vtanhq_f32(float32x4_t val)
126{
127 static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
128 static const float32x4_t CONST_2 = vdupq_n_f32(2.f);
129 static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
130 static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);
131
132 float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
133 float32x4_t exp2x = vexpq_f32(vmulq_f32(CONST_2, x));
134 float32x4_t num = vsubq_f32(exp2x, CONST_1);
135 float32x4_t den = vaddq_f32(exp2x, CONST_1);
136 float32x4_t tanh = vmulq_f32(num, vinvq_f32(den));
137 return tanh;
138}
139
140inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
141{
142 return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
143}
Pablo Tellodf246182017-07-03 16:25:09 +0100144
145#ifdef ARM_COMPUTE_ENABLE_FP16
146/* Exponent polynomial coefficients */
147const std::array<float16x8_t, 8> exp_tab_f16 =
148{
149 {
150 vdupq_n_f16(1.f),
151 vdupq_n_f16(0.0416598916054f),
152 vdupq_n_f16(0.500000596046f),
153 vdupq_n_f16(0.0014122662833f),
154 vdupq_n_f16(1.00000011921f),
155 vdupq_n_f16(0.00833693705499f),
156 vdupq_n_f16(0.166665703058f),
157 vdupq_n_f16(0.000195780929062f),
158 }
159};
160
161/* Logarithm polynomial coefficients */
162const std::array<float16x8_t, 8> log_tab_f16 =
163{
164 {
165 vdupq_n_f16(-2.29561495781f),
166 vdupq_n_f16(-2.47071170807f),
167 vdupq_n_f16(-5.68692588806f),
168 vdupq_n_f16(-0.165253549814f),
169 vdupq_n_f16(5.17591238022f),
170 vdupq_n_f16(0.844007015228f),
171 vdupq_n_f16(4.58445882797f),
172 vdupq_n_f16(0.0141278216615f),
173 }
174};
Pablo Tello91654c42017-07-05 11:32:17 +0100175inline float16x8_t vinvsqrtq_f16(float16x8_t x)
176{
177 float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
178 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
179 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
180
181 return sqrt_reciprocal;
182}
Pablo Tellodf246182017-07-03 16:25:09 +0100183
184inline float16x8_t vinvq_f16(float16x8_t x)
185{
186 float16x8_t recip = vrecpeq_f16(x);
187 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
188 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
189 return recip;
190}
191
Pablo Tello91654c42017-07-05 11:32:17 +0100192inline float16x8_t vtanhq_f16(float16x8_t val)
193{
194 const float16x8_t CONST_1 = vdupq_n_f16(1.f);
195 const float16x8_t CONST_2 = vdupq_n_f16(2.f);
196 const float16x8_t CONST_MIN_TANH = vdupq_n_f16(-10.f);
197 const float16x8_t CONST_MAX_TANH = vdupq_n_f16(10.f);
198
199 const float16x8_t x = vminq_f16(vmaxq_f16(val, CONST_MIN_TANH), CONST_MAX_TANH);
200 const float16x8_t exp2x = vexpq_f16(vmulq_f16(CONST_2, x));
201 const float16x8_t num = vsubq_f16(exp2x, CONST_1);
202 const float16x8_t den = vaddq_f16(exp2x, CONST_1);
203 const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den));
204 return tanh;
205}
206
Pablo Tellodf246182017-07-03 16:25:09 +0100207inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
208{
209 const float16x8_t A = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
210 const float16x8_t B = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
211 const float16x8_t C = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
212 const float16x8_t D = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
213 const float16x8_t x2 = vmulq_f16(x, x);
214 const float16x8_t x4 = vmulq_f16(x2, x2);
215 const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
216 return res;
217}
218
219inline float16x8_t vexpq_f16(float16x8_t x)
220{
221 static const float16x8_t CONST_LN2 = vdupq_n_f16(0.6931471805f); // ln(2)
222 static const float16x8_t CONST_INV_LN2 = vdupq_n_f16(1.4426950408f); // 1/ln(2)
223 static const float16x8_t CONST_0 = vdupq_n_f16(0.f);
224 static const int16x8_t CONST_NEGATIVE_126 = vdupq_n_s16(-126);
225
226 // Perform range reduction [-log(2),log(2)]
227 const int16x8_t m = vcvtq_s16_f16(vmulq_f16(x, CONST_INV_LN2));
228 const float16x8_t val = vsubq_f16(x, vmulq_f16(vcvtq_f16_s16(m), CONST_LN2));
229
230 // Polynomial Approximation
231 float16x8_t poly = vtaylor_polyq_f16(val, exp_tab_f16);
232
233 // Reconstruct
234 poly = vreinterpretq_f16_s16(vqaddq_s16(vreinterpretq_s16_f16(poly), vqshlq_n_s16(m, 9)));
235 poly = vbslq_f16(vcltq_s16(m, CONST_NEGATIVE_126), CONST_0, poly);
236
237 return poly;
238}
239
240inline float16x8_t vlogq_f16(float16x8_t x)
241{
242 static const int16x8_t CONST_127 = vdupq_n_s16(127); // 127
243 static const float16x8_t CONST_LN2 = vdupq_n_f16(0.6931471805f); // ln(2)
244
245 // Extract exponent
246 const int16x8_t m = vsubq_s16(vreinterpretq_s16_u16(vshrq_n_u16(vreinterpretq_u16_f16(x), 9)), CONST_127);
247 const float16x8_t val = vreinterpretq_f16_s16(vsubq_s16(vreinterpretq_s16_f16(x), vshlq_n_s16(m, 9)));
248
249 // Polynomial Approximation
250 float16x8_t poly = vtaylor_polyq_f16(val, log_tab_f16);
251
252 // Reconstruct
253 poly = vaddq_f16(poly, vmulq_f16(vcvtq_f16_s16(m), CONST_LN2));
254
255 return poly;
256}
257
258inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
259{
260 return vexpq_f16(vmulq_f16(n, vlogq_f16(val)));
261}
262#endif /* ARM_COMPUTE_ENABLE_FP16 */
263}