blob: 8afd036e7c576aae5599fe6eef3e611e0bd7ce18 [file] [log] [blame]
Georgios Pinitas529b5a22021-07-27 15:55:30 +01001/*
2 * Copyright (c) 2017-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Georgios Pinitas7891a732021-08-20 21:39:25 +010024#include "src/gpu/cl/operators/ClFullyConnected.h"
Georgios Pinitas529b5a22021-07-27 15:55:30 +010025
26#include "arm_compute/core/Size2D.h"
27#include "arm_compute/core/Validate.h"
28#include "arm_compute/core/utils/misc/ShapeCalculator.h"
29#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
30#include "arm_compute/runtime/CL/CLScheduler.h"
31#include "src/core/CL/kernels/CLFillBorderKernel.h"
32
33#include "src/core/helpers/MemoryHelpers.h"
Georgios Pinitas7891a732021-08-20 21:39:25 +010034#include "src/gpu/cl/operators/ClConvertFullyConnectedWeights.h"
35#include "src/gpu/cl/operators/ClFlatten.h"
36#include "src/gpu/cl/operators/ClGemm.h"
37#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
38#include "src/gpu/cl/operators/ClTranspose.h"
39#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
Georgios Pinitas529b5a22021-07-27 15:55:30 +010040
ramelg012e53f172021-09-22 10:48:25 +010041#include "src/common/utils/Log.h"
Georgios Pinitas529b5a22021-07-27 15:55:30 +010042#include "support/Cast.h"
43
44#include <algorithm>
45
46namespace arm_compute
47{
48namespace opencl
49{
50using namespace arm_compute::experimental;
51using namespace arm_compute::misc::shape_calculator;
52
53namespace
54{
55Status construct_gemmlowp_output_stage(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo &dst,
56 GEMMLowpOutputStageInfo &gemmlowp_output_stage, ActivationLayerInfo activation_info)
57{
58 gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
59 gemmlowp_output_stage.gemmlowp_offset = 0;
60 gemmlowp_output_stage.gemmlowp_multiplier = 0;
61 gemmlowp_output_stage.gemmlowp_shift = 0;
62
63 const auto data_type = src.data_type();
64
65 // Configure output stage for quantized case
66 if(is_data_type_quantized_asymmetric(data_type))
67 {
68 const QuantizationInfo oq_info = dst.quantization_info();
69 const UniformQuantizationInfo iq_unif = src.quantization_info().uniform();
70 const UniformQuantizationInfo wq_unif = weights.quantization_info().uniform();
71 const UniformQuantizationInfo oq_unif = oq_info.uniform();
72
73 const auto output_quant_info = (dst.total_size() == 0) ? iq_unif : oq_unif;
74
75 const float multiplier = (iq_unif.scale * wq_unif.scale) / output_quant_info.scale;
76 int output_multiplier = 0;
77 int output_shift = 0;
78 ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
79
80 PixelValue type_min{};
81 PixelValue type_max{};
82 std::tie(type_min, type_max) = get_min_max(data_type);
83
84 if(activation_info.enabled())
85 {
86 std::tie(type_min, type_max) = get_quantized_activation_min_max(activation_info, data_type, output_quant_info);
87 }
88
89 // Set the GEMMLowp output stage info
90 gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
91 gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
92 gemmlowp_output_stage.gemmlowp_shift = output_shift;
93 gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
94 gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
95 type_min.get(gemmlowp_output_stage.gemmlowp_min_bound);
96 type_max.get(gemmlowp_output_stage.gemmlowp_max_bound);
97 }
98
99 return Status{};
100}
101
102Status validate_mm(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo *bias, const ITensorInfo &dst, const FullyConnectedLayerInfo &fc_info)
103{
104 GEMMLowpOutputStageInfo gemmlowp_output_stage;
105 ARM_COMPUTE_RETURN_ON_ERROR(construct_gemmlowp_output_stage(src, weights, dst, gemmlowp_output_stage, fc_info.activation_info));
106
107 const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
108 false, // is_b_reshaped
109 true, // reshape_b_only_on_first_run
110 0, // depth_output_gemm3d
111 false, // reinterpret_input_as_3d
112 fc_info.retain_internal_weights, // retain_internal_weights
113 gemmlowp_output_stage, // gemmlowp_output_stage
114 fc_info.fp_mixed_precision, // fp_mixed_precision
115 false, // fast_math
116 true, // broadcast_bias
117 ActivationLayerInfo()); // activation_info
118
119 if(is_data_type_quantized_asymmetric(src.data_type()))
120 {
121 const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
122 const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
123
124 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
125 // Extract and negate src and weights offset
126 const QuantizationInfo src_quantization_info(iq_info.scale, -iq_info.offset);
127 const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);
128
129 // Validate gemmlowp function
130 ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyCore::validate(&src.clone()->set_quantization_info(src_quantization_info),
131 &weights.clone()->set_quantization_info(weights_quantization_info),
132 bias,
133 &dst,
134 gemm_info));
135 }
136 else
137 {
138 ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&src, &weights, bias, &dst, 1.f, 1.f, gemm_info));
139 }
140
141 return Status{};
142}
143} // namespace
144
145ClFullyConnected::ClFullyConnected()
146 : _convert_weights(nullptr),
147 _flatten(nullptr),
148 _reshape_weights(nullptr),
149 _mm_gemm(nullptr),
150 _mm_gemmlowp(nullptr),
151 _aux_mem(Count)
152{
153}
154
155ClFullyConnected::~ClFullyConnected() = default;
156
157void ClFullyConnected::configure_mm(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
158 const FullyConnectedLayerInfo &fc_info)
159{
160 GEMMLowpOutputStageInfo gemmlowp_output_stage;
161 construct_gemmlowp_output_stage(*src, *weights, *dst, gemmlowp_output_stage, fc_info.activation_info);
162
163 const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
164 false, // is_b_reshaped
165 true, // reshape_b_only_on_first_run
166 0, // depth_output_gemm3d
167 false, // reinterpret_input_as_3d
168 fc_info.retain_internal_weights, // retain_internal_weights
169 gemmlowp_output_stage, // gemmlowp_output_stage
170 fc_info.fp_mixed_precision, // fp_mixed_precision
171 false, // fast_math
172 true, // broadcast_bias
Giorgio Arena63e0beb2021-09-24 14:04:27 +0100173 fc_info.activation_info); // activation_info
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100174
175 if(_is_quantized)
176 {
177 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
178 // Extract and negate input and weights offset
179 const QuantizationInfo src_quantization_info = src->quantization_info();
180 const QuantizationInfo weights_quantization_info = weights->quantization_info();
181
182 TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
183 TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
184
185 src_info.set_quantization_info(QuantizationInfo(src_quantization_info.uniform().scale, -src_quantization_info.uniform().offset));
186 weights_info.set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
187
188 // Configure gemmlowp function
189 _mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
190 _mm_gemmlowp->configure(compile_context, &src_info, &weights_info, bias, dst, gemm_info);
191 }
192 else
193 {
194 // Configure matrix multiply kernel
195 _mm_gemm = std::make_unique<ClGemm>();
196 _mm_gemm->configure(compile_context, src, weights, bias, dst, 1.f, 1.f, gemm_info);
197 }
198}
199
200void ClFullyConnected::configure_conv_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
201 const FullyConnectedLayerInfo &fc_info)
202{
203 ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
204
205 // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
206
207 // Initialize output tensor for flatten
208 _flattened_src = src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW);
209
210 // Configure flatten kernel
211 _flatten = std::make_unique<ClFlatten>();
212 _flatten->configure(compile_context, src, &_flattened_src);
213
214 // Configure matrix multiply kernel
215 configure_mm(compile_context, &_flattened_src, weights, bias, dst, fc_info);
216}
217
218void ClFullyConnected::configure_fc_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
219 const FullyConnectedLayerInfo &fc_info)
220{
221 ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
222
223 // Configure matrix multiply kernel
224 configure_mm(compile_context, src, weights, bias, dst, fc_info);
225}
226
227void ClFullyConnected::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
228 FullyConnectedLayerInfo fc_info)
229{
230 ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
231
232 // Perform validate step
233 ARM_COMPUTE_ERROR_THROW_ON(ClFullyConnected::validate(src, weights, biases, dst, fc_info));
ramelg012e53f172021-09-22 10:48:25 +0100234 ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, fc_info);
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100235
236 _are_weights_converted = true;
237 _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
238 _is_fc_after_conv = true;
239 _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
240 _is_prepared = fc_info.retain_internal_weights;
241 _weights_to_use = TensorInfo(*weights);
242 _weights_to_use_idx = ACL_SRC_1;
243
244 // With the Fully Connected layer we can have 4 different cases:
245 // 1) Convolution layer -> Fully Connected layer without batches
246 // 2) Fully Connected layer -> Fully Connected layer without batches
247 // 3) Convolution layer -> Fully Connected layer with batches
248 // 4) Fully Connected layer -> Fully Connected layer with batches
249
250 // Check if we have a fully connected layer with batches
251 const bool is_batched_fc_layer = dst->dimension(1) > 1;
252 if(is_batched_fc_layer)
253 {
254 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
255 src->tensor_shape().cend(),
256 dst->tensor_shape().cbegin() + 1));
257 }
258 else
259 {
260 _is_fc_after_conv = src->num_dimensions() > 1;
261 }
262
263 ITensorInfo *weights_used = weights;
264
265 // Reshape weights if needed
266 if(!_are_weights_reshaped)
267 {
268 // Reshape the weights
269 _reshape_weights = std::make_unique<ClTranspose>();
270 _reshape_weights->configure(compile_context, weights, &_reshaped_weights);
271 weights_used = &_reshaped_weights;
272 _weights_to_use_idx = offset_int_vec(TransposedWeights);
273 }
274
275 // Convert weights if needed
276 if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
277 {
278 // Convert weights
279 _convert_weights = std::make_unique<ClConvertFullyConnectedWeights>();
280 _convert_weights->configure(compile_context,
281 weights_used,
282 &_converted_weights,
283 src->tensor_shape(),
284 fc_info.weights_trained_layout);
285
286 weights_used = &_converted_weights;
287 _weights_to_use_idx = offset_int_vec(ConvertedWeights);
288 _are_weights_converted = false;
289 }
290
291 if(_is_fc_after_conv)
292 {
293 // Fully Connected layer after a Convolution Layer without batches
294 configure_conv_fc(compile_context, src, weights_used, biases, dst, fc_info);
295 }
296 else
297 {
298 // Fully Connected layer after a Fully Connected Layer without batches
299 configure_fc_fc(compile_context, src, weights_used, biases, dst, fc_info);
300 }
301 // Update TensorInfo of final weights used (Need to be done in the end due to padding expansion)
302 _weights_to_use = *weights_used;
303
304 // Set auxiliary memory requirements
305 auto gemm_mem_req = (_is_quantized) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
306 for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
307 {
308 _aux_mem[i] = gemm_mem_req[i];
309 }
310 if(_aux_mem[1].size > 0 || _aux_mem[2].size > 0) // Persistent weights memory on GEMMs
311 {
312 // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
313 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
314 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
315 }
316 else
317 {
318 // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
319 const auto transposed_wei_lft = (_weights_to_use_idx == offset_int_vec(TransposedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
320 const auto converted_wei_lft = (_weights_to_use_idx == offset_int_vec(ConvertedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
321
322 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), transposed_wei_lft, _reshaped_weights.total_size());
323 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), converted_wei_lft, _converted_weights.total_size());
324 }
325 _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
326}
327
328Status ClFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
329 FullyConnectedLayerInfo fc_info)
330{
331 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
332 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
333 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
334 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
335 ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
336 && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
Giorgio Arena63e0beb2021-09-24 14:04:27 +0100337 ARM_COMPUTE_RETURN_ERROR_ON(!weights->are_values_constant() && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100338
339 bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
340 bool is_fc_after_conv = true;
341
342 const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW));
343 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
344 const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
345
346 // With the Fully Connected layer we can have 4 different cases:
347 // 1) Convolution layer -> Fully Connected layer without batches
348 // 2) Fully Connected layer -> Fully Connected layer without batches
349 // 3) Convolution layer -> Fully Connected layer with batches
350 // 4) Fully Connected layer -> Fully Connected layer with batches
351
352 const ITensorInfo *src_to_use = src;
353 const ITensorInfo *weights_to_use = weights;
354
Giorgio Arena63e0beb2021-09-24 14:04:27 +0100355 if(biases != nullptr)
356 {
357 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
358 if(is_data_type_quantized(src->data_type()))
359 {
360 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
361 }
362 else
363 {
364 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
365 }
366 }
367
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100368 // Check if we have a fully connected layer with batches
369 const bool is_batched_fc_layer = dst->dimension(1) > 1;
370 if(is_batched_fc_layer)
371 {
372 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
373 src->tensor_shape().cend(),
374 dst->tensor_shape().cbegin() + 1));
375 }
376 else
377 {
378 is_fc_after_conv = src->num_dimensions() > 1;
379 }
380
381 if(!weights_reshaped)
382 {
383 // Validate reshape weights kernel
384 ARM_COMPUTE_RETURN_ON_ERROR(ClTranspose::validate(weights, &reshaped_weights));
385 weights_to_use = &reshaped_weights;
386 }
387
388 if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
389 {
390 // Validate convert weights kernel
391 ARM_COMPUTE_RETURN_ON_ERROR(ClConvertFullyConnectedWeights::validate(weights_to_use,
392 &converted_weights,
393 src->tensor_shape(),
394 fc_info.weights_trained_layout));
395 weights_to_use = &converted_weights;
396 }
397
398 if(is_fc_after_conv)
399 {
400 // Fully Connected layer after a Convolution Layer without batches
401 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
402
403 // Validate flatten kernel
404 ARM_COMPUTE_RETURN_ON_ERROR(ClFlatten::validate(src, &flatten_src));
405 src_to_use = &flatten_src;
406 }
407 else
408 {
409 // Fully Connected layer after a Fully Connected Layer without batches
410 ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
411 }
412
413 // Validate matrix multiply kernel
414 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*src_to_use, *weights_to_use, biases, *dst, fc_info));
415
416 return Status{};
417}
418
419void ClFullyConnected::run(ITensorPack &tensors)
420{
421 prepare(tensors);
422
423 auto src = tensors.get_const_tensor(ACL_SRC_0);
424
425 CLAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
426 CLAuxTensorHandler weights(_weights_to_use_idx, _weights_to_use, tensors, false);
427
428 // Linearize input if it comes from a convolutional layer
429 if(_is_fc_after_conv)
430 {
431 ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
432 _flatten->run(flatten_pack);
433 }
434
435 ITensorPack gemm_pack = tensors;
436 gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
437 if(_weights_to_use_idx != ACL_SRC_1)
438 {
439 gemm_pack.add_const_tensor(ACL_SRC_1, weights.get());
440 }
441
442 // Run matrix multiply
443 if(_is_quantized)
444 {
445 _mm_gemmlowp->run(gemm_pack);
446 }
447 else
448 {
449 _mm_gemm->run(gemm_pack);
450 }
451}
452
453void ClFullyConnected::prepare(ITensorPack &tensors)
454{
455 if(!_is_prepared)
456 {
457 auto weights = tensors.get_const_tensor(ACL_SRC_1);
458
459 CLAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
460 CLAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
461
462 // Pointer to current weights
463 const ITensor *cur_weights = weights;
464
465 // Reshape of the weights if needed (happens only once)
466 if(!_are_weights_reshaped)
467 {
468 // Run reshape weights kernel and mark weights as unused
469 ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
470 _reshape_weights->run(transpose_pack);
471
472 cur_weights->mark_as_unused();
473 cur_weights = reshaped_weights.get();
474
475 _are_weights_reshaped = true;
476 }
477
478 // Convert weights if needed (happens only once)
479 if(!_are_weights_converted)
480 {
481 ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
482 _convert_weights->run(convert_pack);
483
484 cur_weights->mark_as_unused();
485 cur_weights = converted_weights.get();
486
487 _are_weights_converted = true;
488 }
489
490 tensors.add_const_tensor(ACL_SRC_1, cur_weights);
491
492 // Prepare GEMM prepare and release unused weights
493 if(!_is_quantized)
494 {
495 _mm_gemm->prepare(tensors);
496 }
497 else
498 {
499 _mm_gemmlowp->prepare(tensors);
500 }
501 _is_prepared = true;
502 }
503}
504
505experimental::MemoryRequirements ClFullyConnected::workspace() const
506{
507 return _aux_mem;
508}
509} // namespace opencl
510} // namespace arm_compute