blob: a77df030e61e3d8b33da848c8ef5aa07970ef53b [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
2 * Copyright (c) 2016, 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef __ARM_COMPUTE_UTILS_H__
25#define __ARM_COMPUTE_UTILS_H__
26
27#include "arm_compute/core/Error.h"
28#include "arm_compute/core/Types.h"
29
30#include <algorithm>
31#include <cstdint>
32#include <cstdlib>
33#include <numeric>
34#include <sstream>
35#include <string>
36#include <type_traits>
37#include <utility>
steniu017ce53c62017-09-29 14:55:00 +010038#include <vector>
Anthony Barbier6ff3b192017-09-04 18:44:23 +010039
40namespace arm_compute
41{
42/** Computes the smallest number larger or equal to value that is a multiple of divisor. */
43template <typename S, typename T>
44inline auto ceil_to_multiple(S value, T divisor) -> decltype(((value + divisor - 1) / divisor) * divisor)
45{
46 ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0);
47 return ((value + divisor - 1) / divisor) * divisor;
48}
49
50/** Computes the largest number smaller or equal to value that is a multiple of divisor. */
51template <typename S, typename T>
52inline auto floor_to_multiple(S value, T divisor) -> decltype((value / divisor) * divisor)
53{
54 ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0);
55 return (value / divisor) * divisor;
56}
57
58/** Calculate the rounded up quotient of val / m. */
59template <typename S, typename T>
60constexpr auto DIV_CEIL(S val, T m) -> decltype((val + m - 1) / m)
61{
62 return (val + m - 1) / m;
63}
64
65/** Returns the arm_compute library build information
66 *
67 * Contains the version number and the build options used to build the library
68 *
69 * @return The arm_compute library build information
70 */
71std::string build_information();
72
73/** Load an entire file in memory
74 *
75 * @param[in] filename Name of the file to read.
76 * @param[in] binary Is it a binary file ?
77 *
78 * @return The content of the file.
79 */
80std::string read_file(const std::string &filename, bool binary);
81
Anthony Barbier6ff3b192017-09-04 18:44:23 +010082/** The size in bytes of the data type
83 *
84 * @param[in] data_type Input data type
85 *
86 * @return The size in bytes of the data type
87 */
88inline size_t data_size_from_type(DataType data_type)
89{
90 switch(data_type)
91 {
92 case DataType::U8:
93 case DataType::S8:
94 case DataType::QS8:
Michel Iwaniec00633802017-10-12 14:14:15 +010095 case DataType::QASYMM8:
Anthony Barbier6ff3b192017-09-04 18:44:23 +010096 return 1;
97 case DataType::U16:
98 case DataType::S16:
99 case DataType::F16:
100 case DataType::QS16:
101 return 2;
102 case DataType::F32:
103 case DataType::U32:
104 case DataType::S32:
Pablo Tellof87cc7f2017-07-26 10:28:40 +0100105 case DataType::QS32:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100106 return 4;
107 case DataType::F64:
108 case DataType::U64:
109 case DataType::S64:
110 return 8;
111 case DataType::SIZET:
112 return sizeof(size_t);
113 default:
114 ARM_COMPUTE_ERROR("Invalid data type");
115 return 0;
116 }
117}
118
119/** The size in bytes of the pixel format
120 *
121 * @param[in] format Input format
122 *
123 * @return The size in bytes of the pixel format
124 */
125inline size_t pixel_size_from_format(Format format)
126{
127 switch(format)
128 {
129 case Format::U8:
130 return 1;
131 case Format::U16:
132 case Format::S16:
133 case Format::F16:
134 case Format::UV88:
135 case Format::YUYV422:
136 case Format::UYVY422:
137 return 2;
138 case Format::RGB888:
139 return 3;
140 case Format::RGBA8888:
141 return 4;
142 case Format::U32:
143 case Format::S32:
144 case Format::F32:
145 return 4;
146 //Doesn't make sense for planar formats:
147 case Format::NV12:
148 case Format::NV21:
149 case Format::IYUV:
150 case Format::YUV444:
151 default:
152 ARM_COMPUTE_ERROR("Undefined pixel size for given format");
153 return 0;
154 }
155}
156
157/** The size in bytes of the data type
158 *
159 * @param[in] dt Input data type
160 *
161 * @return The size in bytes of the data type
162 */
163inline size_t element_size_from_data_type(DataType dt)
164{
165 switch(dt)
166 {
167 case DataType::S8:
168 case DataType::U8:
169 case DataType::QS8:
Michel Iwaniec00633802017-10-12 14:14:15 +0100170 case DataType::QASYMM8:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100171 return 1;
172 case DataType::U16:
173 case DataType::S16:
174 case DataType::QS16:
175 case DataType::F16:
176 return 2;
177 case DataType::U32:
178 case DataType::S32:
179 case DataType::F32:
Pablo Tellof87cc7f2017-07-26 10:28:40 +0100180 case DataType::QS32:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100181 return 4;
182 default:
183 ARM_COMPUTE_ERROR("Undefined element size for given data type");
184 return 0;
185 }
186}
187
188/** Return the data type used by a given single-planar pixel format
189 *
190 * @param[in] format Input format
191 *
192 * @return The size in bytes of the pixel format
193 */
194inline DataType data_type_from_format(Format format)
195{
196 switch(format)
197 {
198 case Format::U8:
199 case Format::UV88:
200 case Format::RGB888:
201 case Format::RGBA8888:
202 case Format::YUYV422:
203 case Format::UYVY422:
204 return DataType::U8;
205 case Format::U16:
206 return DataType::U16;
207 case Format::S16:
208 return DataType::S16;
209 case Format::U32:
210 return DataType::U32;
211 case Format::S32:
212 return DataType::S32;
213 case Format::F16:
214 return DataType::F16;
215 case Format::F32:
216 return DataType::F32;
217 //Doesn't make sense for planar formats:
218 case Format::NV12:
219 case Format::NV21:
220 case Format::IYUV:
221 case Format::YUV444:
222 default:
223 ARM_COMPUTE_ERROR("Not supported data_type for given format");
224 return DataType::UNKNOWN;
225 }
226}
227
228/** Return the plane index of a given channel given an input format.
229 *
230 * @param[in] format Input format
231 * @param[in] channel Input channel
232 *
233 * @return The plane index of the specific channel of the specific format
234 */
235inline int plane_idx_from_channel(Format format, Channel channel)
236{
237 switch(format)
238 {
239 case Format::NV12:
240 case Format::NV21:
241 {
242 switch(channel)
243 {
244 case Channel::Y:
245 return 0;
246 case Channel::U:
247 case Channel::V:
248 return 1;
249 default:
250 ARM_COMPUTE_ERROR("Not supported channel");
251 return 0;
252 }
253 }
254 case Format::IYUV:
255 case Format::YUV444:
256 {
257 switch(channel)
258 {
259 case Channel::Y:
260 return 0;
261 case Channel::U:
262 return 1;
263 case Channel::V:
264 return 2;
265 default:
266 ARM_COMPUTE_ERROR("Not supported channel");
267 return 0;
268 }
269 }
270 default:
271 ARM_COMPUTE_ERROR("Not supported format");
272 return 0;
273 }
274}
275
276/** Return the number of planes for a given format
277 *
278 * @param[in] format Input format
279 *
280 * @return The number of planes for a given image format.
281 */
282inline size_t num_planes_from_format(Format format)
283{
284 switch(format)
285 {
286 case Format::U8:
287 case Format::S16:
288 case Format::U16:
289 case Format::S32:
290 case Format::U32:
291 case Format::F16:
292 case Format::F32:
293 case Format::RGB888:
294 case Format::RGBA8888:
295 case Format::YUYV422:
296 case Format::UYVY422:
297 return 1;
298 case Format::NV12:
299 case Format::NV21:
300 return 2;
301 case Format::IYUV:
302 case Format::YUV444:
303 return 3;
304 default:
305 ARM_COMPUTE_ERROR("Not supported format");
306 return 0;
307 }
308}
309
310/** Return the number of channels for a given single-planar pixel format
311 *
312 * @param[in] format Input format
313 *
314 * @return The number of channels for a given image format.
315 */
316inline size_t num_channels_from_format(Format format)
317{
318 switch(format)
319 {
320 case Format::U8:
321 case Format::U16:
322 case Format::S16:
323 case Format::U32:
324 case Format::S32:
325 case Format::F16:
326 case Format::F32:
327 return 1;
328 // Because the U and V channels are subsampled
329 // these formats appear like having only 2 channels:
330 case Format::YUYV422:
331 case Format::UYVY422:
332 return 2;
333 case Format::UV88:
334 return 2;
335 case Format::RGB888:
336 return 3;
337 case Format::RGBA8888:
338 return 4;
339 //Doesn't make sense for planar formats:
340 case Format::NV12:
341 case Format::NV21:
342 case Format::IYUV:
343 case Format::YUV444:
344 default:
345 return 0;
346 }
347}
348
349/** Separate a 2D convolution into two 1D convolutions
350*
351* @param[in] conv 2D convolution
352* @param[out] conv_col 1D vertical convolution
353* @param[out] conv_row 1D horizontal convolution
354* @param[in] size Size of the 2D convolution
355*
356* @return true if the separation was successful
357*/
358inline bool separate_matrix(const int16_t *conv, int16_t *conv_col, int16_t *conv_row, uint8_t size)
359{
360 int32_t min_col = -1;
361 int16_t min_col_val = -1;
362
363 for(int32_t i = 0; i < size; ++i)
364 {
365 if(conv[i] != 0 && (min_col < 0 || abs(min_col_val) > abs(conv[i])))
366 {
367 min_col = i;
368 min_col_val = conv[i];
369 }
370 }
371
372 if(min_col < 0)
373 {
374 return false;
375 }
376
377 for(uint32_t j = 0; j < size; ++j)
378 {
379 conv_col[j] = conv[min_col + j * size];
380 }
381
382 for(uint32_t i = 0; i < size; i++)
383 {
384 if(static_cast<int>(i) == min_col)
385 {
386 conv_row[i] = 1;
387 }
388 else
389 {
390 int16_t coeff = conv[i] / conv[min_col];
391
392 for(uint32_t j = 1; j < size; ++j)
393 {
394 if(conv[i + j * size] != (conv_col[j] * coeff))
395 {
396 return false;
397 }
398 }
399
400 conv_row[i] = coeff;
401 }
402 }
403
404 return true;
405}
406
407/** Calculate the scale of the given square matrix
408 *
409 * The scale is the absolute value of the sum of all the coefficients in the matrix.
410 *
411 * @note If the coefficients add up to 0 then the scale is set to 1.
412 *
413 * @param[in] matrix Matrix coefficients
414 * @param[in] matrix_size Number of elements per side of the square matrix. (Number of coefficients = matrix_size * matrix_size).
415 *
416 * @return The absolute value of the sum of the coefficients if they don't add up to 0, otherwise 1.
417 */
418inline uint32_t calculate_matrix_scale(const int16_t *matrix, unsigned int matrix_size)
419{
420 const size_t size = matrix_size * matrix_size;
421
422 return std::max(1, std::abs(std::accumulate(matrix, matrix + size, 0)));
423}
424
steniu017ce53c62017-09-29 14:55:00 +0100425/** Calculate the output shapes of the depth concatenate function.
426 *
427 * @param[in] inputs_vector The vector that stores all the pointers to input.
428 *
429 * @return the output shape
430 */
431template <typename T>
432TensorShape calculate_depth_concatenate_shape(const std::vector<T *> &inputs_vector)
433{
434 TensorShape out_shape = inputs_vector[0]->info()->tensor_shape();
435
436 size_t max_x = 0;
437 size_t max_y = 0;
438 size_t depth = 0;
439
440 for(const auto &tensor : inputs_vector)
441 {
442 ARM_COMPUTE_ERROR_ON(tensor == nullptr);
443 const TensorShape shape = tensor->info()->tensor_shape();
444 max_x = std::max(shape.x(), max_x);
445 max_y = std::max(shape.y(), max_y);
446 depth += shape.z();
447 }
448
449 out_shape.set(0, max_x);
450 out_shape.set(1, max_y);
451 out_shape.set(2, depth);
452
453 return out_shape;
454}
455
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100456/** Calculate accurary required by the horizontal and vertical convolution computations
457 *
458 * @param[in] conv_col Pointer to the vertical vector of the separated convolution filter
459 * @param[in] conv_row Pointer to the horizontal vector of the convolution filter
460 * @param[in] size Number of elements per vector of the separated matrix
461 *
462 * @return The return type is a pair. The first element of the pair is the biggest data type needed for the first stage. The second
463 * element of the pair is the biggest data type needed for the second stage.
464 */
465inline std::pair<DataType, DataType> data_type_for_convolution(const int16_t *conv_col, const int16_t *conv_row, size_t size)
466{
467 DataType first_stage = DataType::UNKNOWN;
468 DataType second_stage = DataType::UNKNOWN;
469
470 auto gez = [](const int16_t &v)
471 {
472 return v >= 0;
473 };
474
475 auto accu_neg = [](const int &first, const int &second)
476 {
477 return first + (second < 0 ? second : 0);
478 };
479
480 auto accu_pos = [](const int &first, const int &second)
481 {
482 return first + (second > 0 ? second : 0);
483 };
484
485 const bool only_positive_coefficients = std::all_of(conv_row, conv_row + size, gez) && std::all_of(conv_col, conv_col + size, gez);
486
487 if(only_positive_coefficients)
488 {
489 const int max_row_value = std::accumulate(conv_row, conv_row + size, 0) * UINT8_MAX;
490 const int max_value = std::accumulate(conv_col, conv_col + size, 0) * max_row_value;
491
492 first_stage = (max_row_value <= UINT16_MAX) ? DataType::U16 : DataType::S32;
493
494 second_stage = (max_value <= UINT16_MAX) ? DataType::U16 : DataType::S32;
495 }
496 else
497 {
498 const int min_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_neg) * UINT8_MAX;
499 const int max_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_pos) * UINT8_MAX;
500 const int neg_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_neg);
501 const int pos_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_pos);
502 const int min_value = neg_coeffs_sum * max_row_value + pos_coeffs_sum * min_row_value;
503 const int max_value = neg_coeffs_sum * min_row_value + pos_coeffs_sum * max_row_value;
504
505 first_stage = ((INT16_MIN <= min_row_value) && (max_row_value <= INT16_MAX)) ? DataType::S16 : DataType::S32;
506
507 second_stage = ((INT16_MIN <= min_value) && (max_value <= INT16_MAX)) ? DataType::S16 : DataType::S32;
508 }
509
510 return std::make_pair(first_stage, second_stage);
511}
512
513/** Calculate the accuracy required by the squared convolution calculation.
514 *
515 *
516 * @param[in] conv Pointer to the squared convolution matrix
517 * @param[in] size The total size of the convolution matrix
518 *
519 * @return The return is the biggest data type needed to do the convolution
520 */
521inline DataType data_type_for_convolution_matrix(const int16_t *conv, size_t size)
522{
523 auto gez = [](const int16_t v)
524 {
525 return v >= 0;
526 };
527
528 const bool only_positive_coefficients = std::all_of(conv, conv + size, gez);
529
530 if(only_positive_coefficients)
531 {
532 const int max_conv_value = std::accumulate(conv, conv + size, 0) * UINT8_MAX;
533 if(max_conv_value <= UINT16_MAX)
534 {
535 return DataType::U16;
536 }
537 else
538 {
539 return DataType::S32;
540 }
541 }
542 else
543 {
544 const int min_value = std::accumulate(conv, conv + size, 0, [](int a, int b)
545 {
546 return b < 0 ? a + b : a;
547 })
548 * UINT8_MAX;
549
550 const int max_value = std::accumulate(conv, conv + size, 0, [](int a, int b)
551 {
552 return b > 0 ? a + b : a;
553 })
554 * UINT8_MAX;
555
556 if((INT16_MIN <= min_value) && (INT16_MAX >= max_value))
557 {
558 return DataType::S16;
559 }
560 else
561 {
562 return DataType::S32;
563 }
564 }
565}
566
Pablo Tellof5f34bb2017-08-22 13:34:13 +0100567/** Returns expected shape for the deconvolution output tensor.
568 *
569 * @param[in] out_dims widht and height of the output tensor, these values can be obtained with the function deconvolution_output_dimensions.
570 * @param[in] input Shape of the input tensor.
571 * @param[in] weights Shape of the weights tensor.
572 *
573 * @return Deconvolution output tensor shape.
574 */
575TensorShape deconvolution_output_shape(const std::pair<unsigned int, unsigned int> &out_dims, TensorShape input, TensorShape weights);
576
577/** Returns expected width and height of the deconvolution's output tensor.
578 *
579 * @param[in] in_width Width of input tensor (Number of columns)
580 * @param[in] in_height Height of input tensor (Number of rows)
581 * @param[in] kernel_width Kernel width.
582 * @param[in] kernel_height Kernel height.
583 * @param[in] padx X axis padding.
584 * @param[in] pady Y axis padding.
585 * @param[in] ax The number of zeros added to right edge of the input.
586 * @param[in] ay The number of zeros added to top edge of the input.
587 * @param[in] upscalex How much to scale the X axis.
588 * @param[in] upscaley How much to scale the Y axis.
589 * @param[in] round Rounding policy to be used when computing the output's dimensions.
590 *
591 * @return A pair with the new width in the first position and the new height in the second.
592 */
593
594const std::pair<unsigned int, unsigned int> deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height,
595 unsigned int kernel_width, unsigned int kernel_height,
596 unsigned int padx, unsigned int pady, unsigned int ax, unsigned int ay,
597 float upscalex, float upscaley, DimensionRoundingType round);
598
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100599/** Returns expected width and height of output scaled tensor depending on dimensions rounding mode.
600 *
Gian Marco Iodice4e288692017-06-27 11:41:59 +0100601 * @param[in] width Width of input tensor (Number of columns)
602 * @param[in] height Height of input tensor (Number of rows)
603 * @param[in] kernel_width Kernel width.
604 * @param[in] kernel_height Kernel height.
605 * @param[in] pad_stride_info Pad and stride information.
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100606 *
607 * @return A pair with the new width in the first position and the new height in the second.
608 */
Gian Marco Iodice4e288692017-06-27 11:41:59 +0100609const std::pair<unsigned int, unsigned int> scaled_dimensions(unsigned int width, unsigned int height,
610 unsigned int kernel_width, unsigned int kernel_height,
611 const PadStrideInfo &pad_stride_info);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100612
613/** Convert a tensor format into a string.
614 *
615 * @param[in] format @ref Format to be translated to string.
616 *
617 * @return The string describing the format.
618 */
619const std::string &string_from_format(Format format);
620
621/** Convert a channel identity into a string.
622 *
623 * @param[in] channel @ref Channel to be translated to string.
624 *
625 * @return The string describing the channel.
626 */
627const std::string &string_from_channel(Channel channel);
628
629/** Convert a data type identity into a string.
630 *
631 * @param[in] dt @ref DataType to be translated to string.
632 *
633 * @return The string describing the data type.
634 */
635const std::string &string_from_data_type(DataType dt);
636/** Convert a matrix pattern into a string.
637 *
638 * @param[in] pattern @ref MatrixPattern to be translated to string.
639 *
640 * @return The string describing the matrix pattern.
641 */
642const std::string &string_from_matrix_pattern(MatrixPattern pattern);
643/** Translates a given activation function to a string.
644 *
645 * @param[in] act @ref ActivationLayerInfo::ActivationFunction to be translated to string.
646 *
647 * @return The string describing the activation function.
648 */
649const std::string &string_from_activation_func(ActivationLayerInfo::ActivationFunction act);
650/** Translates a given non linear function to a string.
651 *
652 * @param[in] function @ref NonLinearFilterFunction to be translated to string.
653 *
654 * @return The string describing the non linear function.
655 */
656const std::string &string_from_non_linear_filter_function(NonLinearFilterFunction function);
657/** Translates a given interpolation policy to a string.
658 *
659 * @param[in] policy @ref InterpolationPolicy to be translated to string.
660 *
661 * @return The string describing the interpolation policy.
662 */
663const std::string &string_from_interpolation_policy(InterpolationPolicy policy);
664/** Translates a given border mode policy to a string.
665 *
666 * @param[in] border_mode @ref BorderMode to be translated to string.
667 *
668 * @return The string describing the border mode.
669 */
670const std::string &string_from_border_mode(BorderMode border_mode);
671/** Translates a given normalization type to a string.
672 *
673 * @param[in] type @ref NormType to be translated to string.
674 *
675 * @return The string describing the normalization type.
676 */
677const std::string &string_from_norm_type(NormType type);
Georgios Pinitascdf51452017-08-31 14:21:36 +0100678/** Translates a given pooling type to a string.
679 *
680 * @param[in] type @ref PoolingType to be translated to string.
681 *
682 * @return The string describing the pooling type.
683 */
684const std::string &string_from_pooling_type(PoolingType type);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100685/** Lower a given string.
686 *
687 * @param[in] val Given string to lower.
688 *
689 * @return The lowered string
690 */
691std::string lower_string(const std::string &val);
692
693/** Check if a given data type is of floating point type
694 *
695 * @param[in] dt Input data type.
696 *
697 * @return True if data type is of floating point type, else false.
698 */
699inline bool is_data_type_float(DataType dt)
700{
701 switch(dt)
702 {
703 case DataType::F16:
704 case DataType::F32:
705 return true;
706 default:
707 return false;
708 }
709}
710
Georgios Pinitas05078ec2017-11-02 13:06:59 +0000711/** Check if a given data type is of quantized type
712 *
713 * @note Quantized is considered a super-set of fixed-point and asymmetric data types.
714 *
715 * @param[in] dt Input data type.
716 *
717 * @return True if data type is of quantized type, else false.
718 */
719inline bool is_data_type_quantized(DataType dt)
720{
721 switch(dt)
722 {
723 case DataType::QS8:
724 case DataType::QASYMM8:
725 case DataType::QS16:
726 case DataType::QS32:
727 return true;
728 default:
729 return false;
730 }
731}
732
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100733/** Check if a given data type is of fixed point type
734 *
735 * @param[in] dt Input data type.
736 *
737 * @return True if data type is of fixed point type, else false.
738 */
739inline bool is_data_type_fixed_point(DataType dt)
740{
741 switch(dt)
742 {
743 case DataType::QS8:
744 case DataType::QS16:
Pablo Tellof87cc7f2017-07-26 10:28:40 +0100745 case DataType::QS32:
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100746 return true;
747 default:
748 return false;
749 }
750}
751
Georgios Pinitas05078ec2017-11-02 13:06:59 +0000752/** Check if a given data type is of asymmetric quantized type
753 *
754 * @param[in] dt Input data type.
755 *
756 * @return True if data type is of symmetric quantized type, else false.
757 */
Georgios Pinitas388d3ec2017-11-02 12:17:56 +0000758inline bool is_data_type_quantized_assymetric(DataType dt)
Georgios Pinitas05078ec2017-11-02 13:06:59 +0000759{
760 switch(dt)
761 {
762 case DataType::QASYMM8:
763 return true;
764 default:
765 return false;
766 }
767}
768
Georgios Pinitas89010962017-08-04 14:58:27 +0100769/** Create a string with the float in full precision.
770 *
771 * @param val Floating point value
772 *
773 * @return String with the floating point value.
774 */
775inline std::string float_to_string_with_full_precision(float val)
776{
777 std::stringstream ss;
778 ss.precision(std::numeric_limits<float>::digits10 + 1);
779 ss << val;
780 return ss.str();
781}
782
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100783/** Print consecutive elements to an output stream.
784 *
785 * @param[out] s Output stream to print the elements to.
786 * @param[in] ptr Pointer to print the elements from.
787 * @param[in] n Number of elements to print.
788 * @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
789 * @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
790 */
791template <typename T>
792void print_consecutive_elements_impl(std::ostream &s, const T *ptr, unsigned int n, int stream_width = 0, const std::string &element_delim = " ")
793{
794 using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
795
796 for(unsigned int i = 0; i < n; ++i)
797 {
798 // Set stream width as it is not a "sticky" stream manipulator
799 if(stream_width != 0)
800 {
801 s.width(stream_width);
802 }
803 s << std::right << static_cast<print_type>(ptr[i]) << element_delim;
804 }
805}
806
807/** Identify the maximum width of n consecutive elements.
808 *
809 * @param[in] s The output stream which will be used to print the elements. Used to extract the stream format.
810 * @param[in] ptr Pointer to the elements.
811 * @param[in] n Number of elements.
812 *
813 * @return The maximum width of the elements.
814 */
815template <typename T>
816int max_consecutive_elements_display_width_impl(std::ostream &s, const T *ptr, unsigned int n)
817{
818 using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
819
820 int max_width = -1;
821 for(unsigned int i = 0; i < n; ++i)
822 {
823 std::stringstream ss;
824 ss.copyfmt(s);
825 ss << static_cast<print_type>(ptr[i]);
826 max_width = std::max<int>(max_width, ss.str().size());
827 }
828 return max_width;
829}
830
831/** Print consecutive elements to an output stream.
832 *
833 * @param[out] s Output stream to print the elements to.
834 * @param[in] dt Data type of the elements
835 * @param[in] ptr Pointer to print the elements from.
836 * @param[in] n Number of elements to print.
837 * @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
838 * @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
839 */
840void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim = " ");
841
842/** Identify the maximum width of n consecutive elements.
843 *
844 * @param[in] s Output stream to print the elements to.
845 * @param[in] dt Data type of the elements
846 * @param[in] ptr Pointer to print the elements from.
847 * @param[in] n Number of elements to print.
848 *
849 * @return The maximum width of the elements.
850 */
851int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n);
852}
853#endif /*__ARM_COMPUTE_UTILS_H__ */