blob: fa16484cd3cb933176114a1e5195bc21fcb56f54 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
Manuel Bottini79fa9a22019-02-22 17:54:22 +00002 * Copyright (c) 2016-2019 ARM Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
25
Anthony Barbiereaefd002018-07-20 17:49:35 +010026#include "arm_compute/core/CPP/Validate.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010027#include "arm_compute/core/Error.h"
28#include "arm_compute/core/Helpers.h"
29#include "arm_compute/core/IAccessWindow.h"
30#include "arm_compute/core/ITensor.h"
Manuel Bottini79fa9a22019-02-22 17:54:22 +000031#include "arm_compute/core/NEON/NEAsymm.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010032#include "arm_compute/core/NEON/NEFixedPoint.h"
giuros01154bc1c2019-03-26 17:44:40 +000033#include "arm_compute/core/NEON/wrapper/wrapper.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010034#include "arm_compute/core/TensorInfo.h"
Manuel Bottini79fa9a22019-02-22 17:54:22 +000035#include "arm_compute/core/Types.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010036#include "arm_compute/core/Validate.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010037
38#include <arm_neon.h>
39#include <climits>
40#include <cmath>
41#include <cstdint>
42#include <cstdlib>
43
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +000044#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Pablo Tellodf246182017-07-03 16:25:09 +010045#include <arm_fp16.h> // needed for float16_t
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +000046#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Pablo Tellodf246182017-07-03 16:25:09 +010047
Anthony Barbier6ff3b192017-09-04 18:44:23 +010048namespace arm_compute
49{
50class Coordinates;
Anthony Barbier6ff3b192017-09-04 18:44:23 +010051
52namespace
53{
54const float scale255_constant = 1.f / 255.f;
55const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
56const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
57
Michalis Spyrou861f0db2018-02-26 16:47:58 +000058constexpr unsigned int num_elems_processed_per_iteration = 16;
59
Georgios Pinitas631c41a2017-12-06 11:53:03 +000060inline Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +000061{
62 ARM_COMPUTE_UNUSED(overflow_policy);
63 ARM_COMPUTE_UNUSED(rounding_policy);
64
Anthony Barbiereaefd002018-07-20 17:49:35 +010065 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1);
Manuel Bottini79fa9a22019-02-22 17:54:22 +000066 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32);
67 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32);
68 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +000069 ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
70 "Output can only be U8 if both inputs are U8");
71
Manuel Bottini79fa9a22019-02-22 17:54:22 +000072 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::QASYMM8 && input2->data_type() != DataType::QASYMM8,
73 "Input2 must be QASYMM8 if both input1 is QASYMM8");
74
75 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::QASYMM8 && input2->data_type() == DataType::QASYMM8 && overflow_policy == ConvertPolicy::WRAP,
76 "ConvertPolicy cannot be WRAP if datatype is QASYMM8");
77
78 if(output->total_size() > 0)
79 {
80 if(output->data_type() == DataType::QASYMM8)
81 {
82 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2, output);
83 }
84
85 const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
86 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
87 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
88 }
Michalis Spyrou861f0db2018-02-26 16:47:58 +000089
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +000090 if(std::abs(scale - scale255_constant) < 0.00001f)
91 {
92 ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
93 }
94 else
95 {
96 ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
97
98 int exponent = 0;
99 const float normalized_mantissa = std::frexp(scale, &exponent);
100
101 // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
102 // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
103 // Moreover, it will be negative as we deal with 1/2^n
104 ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255");
105 }
106
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000107 return Status{};
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000108}
109
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000110inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000111{
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000112 const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
113 const ValidRegion &valid_region = broadcast_pair.second;
114
115 // Auto initialize output if not initialized
116 {
117 set_shape_if_empty(*output, input1->tensor_shape());
118
119 if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
120 {
121 set_format_if_unknown(*output, Format::S16);
122 }
123 else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
124 {
125 set_format_if_unknown(*output, Format::F32);
126 }
127 else if(input1->data_type() == DataType::F16 || input2->data_type() == DataType::F16)
128 {
129 set_format_if_unknown(*output, Format::F16);
130 }
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000131 }
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000132
133 // Configure kernel window
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000134 Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
135 Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
136 Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
137
138 AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
139 AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000140 AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
141
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000142 bool window_changed = update_window_and_padding(win_input1, input1_access)
143 || update_window_and_padding(win_input2, input2_access)
144 || update_window_and_padding(win, output_access);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000145
146 output_access.set_valid_region(win, valid_region);
147
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000148 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000149 return std::make_pair(err, win);
150}
151
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100152/* Scales a given vector by 1/255.
153 *
154 * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
155 *
156 * @param in Input vector to scale.
157 * @return Scaled output rounded to nearest (round half up).
158 */
159inline int32x4_t scale255_S32_S32(int32x4_t in)
160{
161 // Scale
162 const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
163 // Round to nearest (round half up)
164 // Add +0.5 for all values
165 // Afterwards vcvt rounds toward zero
166 return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
167}
168
169inline uint16x8_t scale255_U16_U16(uint16x8_t in)
170{
171 const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
172 const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
173 return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
174}
175
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000176void mul_saturate_QASYMM8_QASYMM8_QASYMM8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale,
177 const QuantizationInfo &input1_qua_info, const QuantizationInfo &input2_qua_info, const QuantizationInfo &output_qua_info)
178{
179 const auto input1 = static_cast<const qasymm8_t *__restrict>(input1_ptr);
180 const auto input2 = static_cast<const qasymm8_t *__restrict>(input2_ptr);
181 const auto output = static_cast<qasymm8_t *__restrict>(output_ptr);
182
183 const qasymm8x16_t input1_q = vld1q_u8(input1);
184 const qasymm8x16_t input2_q = vld1q_u8(input2);
185
186 // Dequantitize inputs
187 const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
188 const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
189
190 const QuantizationInfo tmp_qua_info = QuantizationInfo(output_qua_info.scale / scale, output_qua_info.offset);
191
192 const float32x4x4_t out_f32x4x4 =
193 {
194 vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
195 vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
196 vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
197 vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3])
198 };
199
200 const uint8x16_t result = vquantize(out_f32x4x4, tmp_qua_info);
201 vst1q_u8(output, result);
202}
203
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100204template <bool is_scale255, bool is_sat>
205void mul_U8_U8_U8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
206{
207 const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
208 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
209 const auto output = static_cast<uint8_t *__restrict>(output_ptr);
210
211 const uint8x16_t ta1 = vld1q_u8(input1);
212 const uint8x16_t ta2 = vld1q_u8(input2);
213
214 uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
215 const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
216 uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
217 const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
218
219 tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
220 tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
221
222 if(is_scale255)
223 {
224 tmp1_high = scale255_U16_U16(tmp1_high);
225 tmp1_low = scale255_U16_U16(tmp1_low);
226 }
227 else
228 {
229 const int16x8_t vn = vdupq_n_s16(-n);
230
231 if(is_sat)
232 {
233 tmp1_high = vqshlq_u16(tmp1_high, vn);
234 tmp1_low = vqshlq_u16(tmp1_low, vn);
235 }
236 else
237 {
238 tmp1_high = vshlq_u16(tmp1_high, vn);
239 tmp1_low = vshlq_u16(tmp1_low, vn);
240 }
241 }
242
243 if(is_sat)
244 {
245 vst1q_u8(output, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
246 }
247 else
248 {
249 vst1q_u8(output, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
250 }
251}
252
253template <bool is_scale255, bool is_sat>
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100254inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n)
255{
256 int32x4_t tmp1_high = vmovl_s16(vget_high_s16(input1));
257 const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2));
258 int32x4_t tmp1_low = vmovl_s16(vget_low_s16(input1));
259 const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(input2));
260
261 tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
262 tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
263
264 if(is_scale255)
265 {
266 tmp1_high = scale255_S32_S32(tmp1_high);
267 tmp1_low = scale255_S32_S32(tmp1_low);
268 }
269 else
270 {
271 // Right shift amount
272 const int32x4_t vn = vdupq_n_s32(-n);
273 // Left shift amount
274 const int32x4_t vnl = vdupq_n_s32(n);
275 // Calculate conversion bit
276 const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
277 const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
278 const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
279 const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
280 const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
281 const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
282 const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
283 const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
284 if(is_sat)
285 {
286 tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
287 tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
288 }
289 else
290 {
291 tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
292 tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
293 }
294 }
295
296 if(is_sat)
297 {
298 return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
299 }
300 else
301 {
302 return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
303 }
304}
305
306template <bool is_scale255, bool is_sat>
307inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n)
308{
309 const int16x8x2_t result =
310 {
311 {
312 // First 8 elements
313 mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[0], input2.val[0], n),
314 // Second 8 elements
315 mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[1], input2.val[1], n)
316 }
317 };
318
319 return result;
320}
321
322template <bool is_scale255, bool is_sat>
323void mul_S16_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
324{
325 const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
326 const auto input2 = static_cast<const int16_t *__restrict>(input2_ptr);
327 const auto output = static_cast<int16_t *__restrict>(output_ptr);
328
329 const int16x8x2_t ta1 = vld2q_s16(input1);
330 const int16x8x2_t ta2 = vld2q_s16(input2);
331 const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
332
333 vst2q_s16(output, result);
334}
335
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100336void mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
337{
338 const auto input1 = static_cast<const float *__restrict>(input1_ptr);
339 const auto input2 = static_cast<const float *__restrict>(input2_ptr);
340 const auto output = static_cast<float *__restrict>(output_ptr);
341
342 const float32x4x4_t ta1 = vld4q_f32(input1);
343 const float32x4x4_t ta2 = vld4q_f32(input2);
344 const float32x4_t scale_vec = vdupq_n_f32(scale);
345 const float32x4x4_t result =
346 {
347 {
348 vmulq_f32(vmulq_f32(ta1.val[0], ta2.val[0]), scale_vec),
349 vmulq_f32(vmulq_f32(ta1.val[1], ta2.val[1]), scale_vec),
350 vmulq_f32(vmulq_f32(ta1.val[2], ta2.val[2]), scale_vec),
351 vmulq_f32(vmulq_f32(ta1.val[3], ta2.val[3]), scale_vec)
352 }
353 };
354 vst4q_f32(output, result);
355}
356
giuros01154bc1c2019-03-26 17:44:40 +0000357void c_mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr)
358{
359 const auto input1 = static_cast<const float *__restrict>(input1_ptr);
360 const auto input2 = static_cast<const float *__restrict>(input2_ptr);
361 const auto output = static_cast<float *__restrict>(output_ptr);
362
363 const float32x4_t a = wrapper::vloadq(input1);
364 float32x4_t b = wrapper::vloadq(input2);
365
366 using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
367
368 const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f };
369 const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
370 const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
371 const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
372 const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
373
374 const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
375 const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
376
377 float32x4_t res = wrapper::vmul(tmp0, b);
378
379 b = wrapper::vrev64(b);
380 b = wrapper::vmul(b, mask);
381
382 res = wrapper::vmla(res, tmp1, b);
383 wrapper::vstore(output, res);
384}
385
Pablo Tellodf246182017-07-03 16:25:09 +0100386void mul_F16_F16_F16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
387{
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000388#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Pablo Tellodf246182017-07-03 16:25:09 +0100389 const auto input1 = static_cast<const float16_t *__restrict>(input1_ptr);
390 const auto input2 = static_cast<const float16_t *__restrict>(input2_ptr);
391 const auto output = static_cast<float16_t *__restrict>(output_ptr);
392 const float16x8x2_t ta1 = vld2q_f16(input1);
393 const float16x8x2_t ta2 = vld2q_f16(input2);
394 const float16x8_t scale_vec = vdupq_n_f16(scale);
395 const float16x8x2_t result =
396 {
397 {
398 vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec),
399 vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec),
400 }
401 };
402 vst2q_f16(output, result);
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000403#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Georgios Pinitas30f02152017-09-27 11:20:48 +0100404 ARM_COMPUTE_UNUSED(input1_ptr);
405 ARM_COMPUTE_UNUSED(input2_ptr);
406 ARM_COMPUTE_UNUSED(output_ptr);
407 ARM_COMPUTE_UNUSED(scale);
Pablo Tellodf246182017-07-03 16:25:09 +0100408 ARM_COMPUTE_ERROR("Not supported. Recompile the library with arch=arm64-v8.2-a.");
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000409#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Pablo Tellodf246182017-07-03 16:25:09 +0100410}
411
412template <bool is_scale255, bool is_sat>
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100413void mul_U8_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
414{
415 const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
416 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
417 const auto output = static_cast<int16_t *__restrict>(output_ptr);
418
419 const uint8x16_t bv = vld1q_u8(input2);
420 const uint8x16_t av = vld1q_u8(input1);
421
422 uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
423 uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
424 tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
425 tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
426
427 if(is_scale255)
428 {
429 tmp_low = scale255_U16_U16(tmp_low);
430 tmp_high = scale255_U16_U16(tmp_high);
431 }
432 else
433 {
434 const int16x8_t vn = vdupq_n_s16(-n);
435
436 if(is_sat)
437 {
438 tmp_low = vqshlq_u16(tmp_low, vn);
439 tmp_high = vqshlq_u16(tmp_high, vn);
440 }
441 else
442 {
443 tmp_low = vshlq_u16(tmp_low, vn);
444 tmp_high = vshlq_u16(tmp_high, vn);
445 }
446 }
447
448 if(is_sat)
449 {
450 static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
451
452 tmp_low = vminq_u16(tmp_low, max);
453 tmp_high = vminq_u16(tmp_high, max);
454 }
455
456 vst1q_s16(output, vreinterpretq_s16_u16(tmp_low));
457 vst1q_s16(output + 8, vreinterpretq_s16_u16(tmp_high));
458}
459
460template <bool is_scale255, bool is_sat>
461void mul_S16_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
462{
463 const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
464 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
465 const auto output = static_cast<int16_t *__restrict>(output_ptr);
466
467 const int16x8x2_t ta1 = vld2q_s16(input1);
468 const uint8x8x2_t ta2u = vld2_u8(input2);
469 const int16x8x2_t ta2 =
470 {
471 {
472 vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
473 vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
474 }
475 };
476
477 const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
478
479 vst2q_s16(output, result);
480}
481
482template <bool is_scale255, bool is_sat>
483void mul_U8_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
484{
485 // Simply swap the two input buffers
486 mul_S16_U8_S16_n<is_scale255, is_sat>(input2_ptr, input1_ptr, output_ptr, n);
487}
488} // namespace
489
490NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel()
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000491 : _func_float(nullptr), _func_int(nullptr), _func_qasymm8(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _scale{ 0 }, _scale_exponent{ 0 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100492{
493}
494
495void NEPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
496{
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000497 ARM_COMPUTE_UNUSED(rounding_policy);
Georgios Pinitasf0dea702017-07-03 18:17:28 +0100498 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
499
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000500 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), scale, overflow_policy, rounding_policy));
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100501
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000502 // Configure kernel window
503 auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
504 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
505
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100506 _input1 = input1;
507 _input2 = input2;
508 _output = output;
509 _scale = scale;
510 _scale_exponent = 0;
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000511 _func_qasymm8 = nullptr;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100512 _func_int = nullptr;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100513 _func_float = nullptr;
514
515 bool is_scale_255 = false;
516 // Check and validate scaling factor
517 if(std::abs(scale - scale255_constant) < 0.00001f)
518 {
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100519 is_scale_255 = true;
520 }
521 else
522 {
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000523 int exponent = 0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100524
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000525 std::frexp(scale, &exponent);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100526
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000527 // Store the positive exponent. We know that we compute 1/2^n
528 // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
529 _scale_exponent = std::abs(exponent - 1);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100530 }
531
532 const DataType dt_input1 = input1->info()->data_type();
533 const DataType dt_input2 = input2->info()->data_type();
534 const DataType dt_output = output->info()->data_type();
535 const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
536
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000537 if(dt_input1 == DataType::QASYMM8 && dt_input2 == DataType::QASYMM8)
538 {
539 _func_qasymm8 = &mul_saturate_QASYMM8_QASYMM8_QASYMM8_n;
540 }
541 else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::U8 == dt_output)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100542 {
543 if(is_scale_255)
544 {
545 _func_int = is_sat ? &mul_U8_U8_U8_n<true, true> : &mul_U8_U8_U8_n<true, false>;
546 }
547 else
548 {
549 _func_int = is_sat ? &mul_U8_U8_U8_n<false, true> : &mul_U8_U8_U8_n<false, false>;
550 }
551 }
552 else if(DataType::S16 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
553 {
554 if(is_scale_255)
555 {
556 _func_int = is_sat ? &mul_S16_S16_S16_n<true, true> : &mul_S16_S16_S16_n<true, false>;
557 }
558 else
559 {
560 _func_int = is_sat ? &mul_S16_S16_S16_n<false, true> : &mul_S16_S16_S16_n<false, false>;
561 }
562 }
563 else if(DataType::S16 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
564 {
565 if(is_scale_255)
566 {
567 _func_int = is_sat ? &mul_S16_U8_S16_n<true, true> : &mul_S16_U8_S16_n<true, false>;
568 }
569 else
570 {
571 _func_int = is_sat ? &mul_S16_U8_S16_n<false, true> : &mul_S16_U8_S16_n<false, false>;
572 }
573 }
574 else if(DataType::U8 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
575 {
576 if(is_scale_255)
577 {
578 _func_int = is_sat ? &mul_U8_S16_S16_n<true, true> : &mul_U8_S16_S16_n<true, false>;
579 }
580 else
581 {
582 _func_int = is_sat ? &mul_U8_S16_S16_n<false, true> : &mul_U8_S16_S16_n<false, false>;
583 }
584 }
585 else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
586 {
587 if(is_scale_255)
588 {
589 _func_int = is_sat ? &mul_U8_U8_S16_n<true, true> : &mul_U8_U8_S16_n<true, false>;
590 }
591 else
592 {
593 _func_int = is_sat ? &mul_U8_U8_S16_n<false, true> : &mul_U8_U8_S16_n<false, false>;
594 }
595 }
Pablo Tellodf246182017-07-03 16:25:09 +0100596 else if(DataType::F16 == dt_input1 && DataType::F16 == dt_input2 && DataType::F16 == dt_output)
597 {
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000598 _func_float = &mul_F16_F16_F16_n;
Pablo Tellodf246182017-07-03 16:25:09 +0100599 _func_int = nullptr;
600 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100601 else if(DataType::F32 == dt_input1 && DataType::F32 == dt_input2 && DataType::F32 == dt_output)
602 {
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000603 _func_float = &mul_F32_F32_F32_n;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100604 _func_int = nullptr;
605 }
606 else
607 {
608 ARM_COMPUTE_ERROR("You called with the wrong img formats");
609 }
610
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000611 INEKernel::configure(win_config.second);
612}
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100613
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000614Status NEPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
615 RoundingPolicy rounding_policy)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000616{
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000617 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000618 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
619 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100620
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000621 return Status{};
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100622}
623
Moritz Pflanzerc186b572017-09-07 09:48:04 +0100624void NEPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100625{
Moritz Pflanzerc186b572017-09-07 09:48:04 +0100626 ARM_COMPUTE_UNUSED(info);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100627 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
628 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
629
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000630 const TensorShape &in_shape1 = _input1->info()->tensor_shape();
631 const TensorShape &in_shape2 = _input2->info()->tensor_shape();
632 const TensorShape &out_shape = _output->info()->tensor_shape();
633
634 bool can_collapse = true;
635 if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
636 {
637 can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
638 for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
639 {
640 can_collapse = (in_shape1[d] == in_shape2[d]);
641 }
642 }
643
644 bool has_collapsed = false;
645 Window collapsed = can_collapse ? window.collapse_if_possible(INEKernel::window(), Window::DimZ, &has_collapsed) : window;
646
647 const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
648 const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
649
650 Window slice = collapsed.first_slice_window_3D();
651 Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
652 Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
653
654 Iterator input1(_input1, slice_input1);
655 Iterator input2(_input2, slice_input2);
656 Iterator output(_output, slice);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100657
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000658 if(_func_qasymm8 != nullptr)
659 {
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100660 execute_window_loop(collapsed, [&](const Coordinates &)
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000661 {
662 (*_func_qasymm8)(input1.ptr(), input2.ptr(), output.ptr(), _scale,
663 _input1->info()->quantization_info(), _input2->info()->quantization_info(), _output->info()->quantization_info());
664 collapsed.slide_window_slice_3D(slice_input1);
665 collapsed.slide_window_slice_3D(slice_input2);
666 },
667 input1, input2, output);
668 }
669 else if(_func_int != nullptr)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100670 {
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100671 execute_window_loop(collapsed, [&](const Coordinates &)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100672 {
673 (*_func_int)(input1.ptr(), input2.ptr(), output.ptr(), _scale_exponent);
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000674 collapsed.slide_window_slice_3D(slice_input1);
675 collapsed.slide_window_slice_3D(slice_input2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100676 },
677 input1, input2, output);
678 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100679 else
680 {
681 ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100682 execute_window_loop(collapsed, [&](const Coordinates &)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100683 {
684 (*_func_float)(input1.ptr(), input2.ptr(), output.ptr(), _scale);
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000685 collapsed.slide_window_slice_3D(slice_input1);
686 collapsed.slide_window_slice_3D(slice_input2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100687 },
688 input1, input2, output);
689 }
690}
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000691
692BorderSize NEPixelWiseMultiplicationKernel::border_size() const
693{
694 const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
695 const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100696 return BorderSize{ 0, border, 0, 0 };
Anthony Barbiereaefd002018-07-20 17:49:35 +0100697}
giuros01154bc1c2019-03-26 17:44:40 +0000698
699namespace
700{
701constexpr unsigned int num_elems_processed_per_iteration_complex = 2;
702
703Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
704{
705 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
706 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
707
708 const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
709
710 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
711
712 // Validate in case of configured output
713 if(output->total_size() > 0)
714 {
715 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
716 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
717 }
718
719 return Status{};
720}
721
722std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
723{
724 const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
725 const TensorShape &out_shape = broadcast_pair.first;
726 const ValidRegion &valid_region = broadcast_pair.second;
727
728 // Auto initialize output if not initialized
729 const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
730 auto_init_if_empty(*output, out_info);
731
732 Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
733 Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
734 Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
735
736 AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
737 AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
738 AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
739
740 bool window_changed = update_window_and_padding(win_input1, input1_access)
741 || update_window_and_padding(win_input2, input2_access)
742 || update_window_and_padding(win, output_access);
743
744 output_access.set_valid_region(win, valid_region);
745
746 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
747 return std::make_pair(err, win);
748}
749} // namespace
750
751NEComplexPixelWiseMultiplicationKernel::NEComplexPixelWiseMultiplicationKernel()
752 : _input1(nullptr), _input2(nullptr), _output(nullptr)
753{
754}
755
756void NEComplexPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output)
757{
758 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
759 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info()));
760
761 // Configure kernel window
762 auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info());
763 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
764
765 _input1 = input1;
766 _input2 = input2;
767 _output = output;
768
769 // Create kernel
770 INEKernel::configure(win_config.second);
771}
772
773Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
774{
775 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
776 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
777 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
778
779 return Status{};
780}
781
782void NEComplexPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
783{
784 ARM_COMPUTE_UNUSED(info);
785 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
786 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
787
788 Iterator input1(_input1, window.broadcast_if_dimension_le_one(_input1->info()->tensor_shape()));
789 Iterator input2(_input2, window.broadcast_if_dimension_le_one(_input2->info()->tensor_shape()));
790 Iterator output(_output, window);
791
792 execute_window_loop(window, [&](const Coordinates &)
793 {
794 c_mul_F32_F32_F32_n(input1.ptr(), input2.ptr(), output.ptr());
795 },
796 input1, input2, output);
797}
798
799BorderSize NEComplexPixelWiseMultiplicationKernel::border_size() const
800{
801 const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
802 const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
803 return { 0, border, 0, 0 };
804}
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000805} // namespace arm_compute