blob: 25dc6c568dbbc22de8a2461ef49a5ec8177ab63f [file] [log] [blame]
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +01001/*
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +00002 * Copyright (c) 2017-2018 ARM Limited.
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Moritz Pflanzera09de0c2017-09-01 20:41:12 +010024#include "tests/validation/Helpers.h"
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +010025
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +000026#include <algorithm>
27#include <cmath>
28
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +010029namespace arm_compute
30{
31namespace test
32{
33namespace validation
34{
Moritz Pflanzer6c6597c2017-09-24 12:09:41 +010035void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern)
36{
37 unsigned int v = 0;
38 std::mt19937 gen(library->seed());
39 std::bernoulli_distribution dist(0.5);
40
41 for(int r = 0; r < rows; ++r)
42 {
43 for(int c = 0; c < cols; ++c, ++v)
44 {
45 uint8_t val = 0;
46
47 switch(pattern)
48 {
49 case MatrixPattern::BOX:
50 val = 255;
51 break;
52 case MatrixPattern::CROSS:
53 val = ((r == (rows / 2)) || (c == (cols / 2))) ? 255 : 0;
54 break;
55 case MatrixPattern::DISK:
56 val = (((r - rows / 2.0f + 0.5f) * (r - rows / 2.0f + 0.5f)) / ((rows / 2.0f) * (rows / 2.0f)) + ((c - cols / 2.0f + 0.5f) * (c - cols / 2.0f + 0.5f)) / ((cols / 2.0f) *
57 (cols / 2.0f))) <= 1.0f ? 255 : 0;
58 break;
59 case MatrixPattern::OTHER:
60 val = (dist(gen) ? 0 : 255);
61 break;
62 default:
63 return;
64 }
65
66 mask[v] = val;
67 }
68 }
69
70 if(pattern == MatrixPattern::OTHER)
71 {
72 std::uniform_int_distribution<uint8_t> distribution_u8(0, ((cols * rows) - 1));
73 mask[distribution_u8(gen)] = 255;
74 }
75}
76
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +010077TensorShape calculate_depth_concatenate_shape(const std::vector<TensorShape> &input_shapes)
78{
79 ARM_COMPUTE_ERROR_ON(input_shapes.empty());
80
81 TensorShape out_shape = input_shapes[0];
82
83 size_t max_x = 0;
84 size_t max_y = 0;
85 size_t depth = 0;
86
87 for(const auto &shape : input_shapes)
88 {
89 max_x = std::max(shape.x(), max_x);
90 max_y = std::max(shape.y(), max_y);
91 depth += shape.z();
92 }
93
94 out_shape.set(0, max_x);
95 out_shape.set(1, max_y);
96 out_shape.set(2, depth);
97
98 return out_shape;
99}
Moritz Pflanzer6c6597c2017-09-24 12:09:41 +0100100
Michalis Spyrou55b3d122018-05-09 09:59:23 +0100101TensorShape calculate_width_concatenate_shape(const std::vector<TensorShape> &input_shapes)
102{
103 ARM_COMPUTE_ERROR_ON(input_shapes.empty());
104
105 TensorShape out_shape = input_shapes[0];
106
107 int width = std::accumulate(input_shapes.begin(), input_shapes.end(), 0, [](int sum, const TensorShape & shape)
108 {
109 return sum + shape.x();
110 });
111 out_shape.set(0, width);
112
113 return out_shape;
114}
115
Moritz Pflanzer6c6597c2017-09-24 12:09:41 +0100116HarrisCornersParameters harris_corners_parameters()
117{
118 HarrisCornersParameters params;
119
120 std::mt19937 gen(library->seed());
Vidhya Sudhan Loganathan851a3222018-05-11 14:26:51 +0100121 std::uniform_real_distribution<float> threshold_dist(0.f, 0.001f);
Moritz Pflanzer6c6597c2017-09-24 12:09:41 +0100122 std::uniform_real_distribution<float> sensitivity(0.04f, 0.15f);
123 std::uniform_real_distribution<float> euclidean_distance(0.f, 30.f);
124 std::uniform_int_distribution<uint8_t> int_dist(0, 255);
125
126 params.threshold = threshold_dist(gen);
127 params.sensitivity = sensitivity(gen);
128 params.min_dist = euclidean_distance(gen);
129 params.constant_border_value = int_dist(gen);
130
131 return params;
132}
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +0000133
134SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint8_t> &src)
135{
136 const QuantizationInfo &quantization_info = src.quantization_info();
Michalis Spyrou57dac842018-03-01 16:03:50 +0000137 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, 0, QuantizationInfo(), src.data_layout() };
138
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +0000139 for(int i = 0; i < src.num_elements(); ++i)
140 {
141 dst[i] = quantization_info.dequantize(src[i]);
142 }
143 return dst;
144}
145
146SimpleTensor<uint8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
147{
148 SimpleTensor<uint8_t> dst{ src.shape(), DataType::QASYMM8, 1, 0, quantization_info };
149 for(int i = 0; i < src.num_elements(); ++i)
150 {
Jaroslaw Rzepecki0a878ae2017-11-22 17:16:39 +0000151 dst[i] = quantization_info.quantize(src[i], RoundingPolicy::TO_NEAREST_UP);
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +0000152 }
153 return dst;
154}
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000155
156void matrix_multiply(const SimpleTensor<float> &a, const SimpleTensor<float> &b, SimpleTensor<float> &out)
157{
158 ARM_COMPUTE_ERROR_ON(a.shape()[0] != b.shape()[1]);
159 ARM_COMPUTE_ERROR_ON(a.shape()[1] != out.shape()[1]);
160 ARM_COMPUTE_ERROR_ON(b.shape()[0] != out.shape()[0]);
161
162 const int M = a.shape()[1]; // Rows
163 const int N = b.shape()[0]; // Cols
164 const int K = b.shape()[1];
165
166 for(int y = 0; y < M; ++y)
167 {
168 for(int x = 0; x < N; ++x)
169 {
170 float acc = 0.0f;
171 for(int k = 0; k < K; ++k)
172 {
173 acc += a[y * K + k] * b[x + k * N];
174 }
175
176 out[x + y * N] = acc;
177 }
178 }
179}
180
181void transpose_matrix(const SimpleTensor<float> &in, SimpleTensor<float> &out)
182{
183 ARM_COMPUTE_ERROR_ON((in.shape()[0] != out.shape()[1]) || (in.shape()[1] != out.shape()[0]));
184
185 const int width = in.shape()[0];
186 const int height = in.shape()[1];
187
188 for(int y = 0; y < height; ++y)
189 {
190 for(int x = 0; x < width; ++x)
191 {
192 const float val = in[x + y * width];
193
194 out[x * height + y] = val;
195 }
196 }
197}
198
199template <typename T>
200void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord)
201{
202 ARM_COMPUTE_ERROR_ON(tile.shape().num_dimensions() != 2);
203
204 const int w_tile = tile.shape()[0];
205 const int h_tile = tile.shape()[1];
206
207 // Fill the tile with zeros
208 std::fill(tile.data() + 0, (tile.data() + (w_tile * h_tile)), static_cast<T>(0));
209
210 // Check if with the dimensions greater than 2 we could have out-of-bound reads
211 for(size_t d = 2; d < Coordinates::num_max_dimensions; ++d)
212 {
213 if(coord[d] < 0 || coord[d] >= static_cast<int>(in.shape()[d]))
214 {
215 ARM_COMPUTE_ERROR("coord[d] < 0 || coord[d] >= in.shape()[d] with d >= 2");
216 }
217 }
218
219 // Since we could have out-of-bound reads along the X and Y dimensions,
220 // we start calculating the input address with x = 0 and y = 0
221 Coordinates start_coord = coord;
222 start_coord[0] = 0;
223 start_coord[1] = 0;
224
225 // Get input and roi pointers
226 auto in_ptr = static_cast<const T *>(in(start_coord));
227 auto roi_ptr = static_cast<T *>(tile.data());
228
229 const int x_in_start = std::max(0, coord[0]);
230 const int y_in_start = std::max(0, coord[1]);
231 const int x_in_end = std::min(static_cast<int>(in.shape()[0]), coord[0] + w_tile);
232 const int y_in_end = std::min(static_cast<int>(in.shape()[1]), coord[1] + h_tile);
233
234 // Number of elements to copy per row
235 const int n = x_in_end - x_in_start;
236
237 // Starting coordinates for the ROI
238 const int x_tile_start = coord[0] > 0 ? 0 : std::abs(coord[0]);
239 const int y_tile_start = coord[1] > 0 ? 0 : std::abs(coord[1]);
240
241 // Update input pointer
242 in_ptr += x_in_start;
243 in_ptr += (y_in_start * in.shape()[0]);
244
245 // Update ROI pointer
246 roi_ptr += x_tile_start;
247 roi_ptr += (y_tile_start * tile.shape()[0]);
248
249 for(int y = y_in_start; y < y_in_end; ++y)
250 {
251 // Copy per row
252 std::copy(in_ptr, in_ptr + n, roi_ptr);
253
254 in_ptr += in.shape()[0];
255 roi_ptr += tile.shape()[0];
256 }
257}
258
259template void get_tile(const SimpleTensor<float> &in, SimpleTensor<float> &roi, const Coordinates &coord);
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +0100260} // namespace validation
261} // namespace test
262} // namespace arm_compute