blob: f7416315e965ad13823b3855dc7cb079013d2fb1 [file] [log] [blame]
Michele Di Giorgio4dfc5532021-06-30 12:05:34 +01001/*
2 * Copyright (c) 2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Georgios Pinitas7891a732021-08-20 21:39:25 +010024#include "src/cpu/operators/CpuGemm.h"
Michele Di Giorgio4dfc5532021-06-30 12:05:34 +010025
26#include "arm_compute/core/TensorInfo.h"
27#include "arm_compute/core/Validate.h"
28#include "arm_compute/core/utils/misc/ShapeCalculator.h"
29#include "arm_compute/runtime/NEON/NEScheduler.h"
30#include "src/core/CPP/Validate.h"
31#include "src/core/helpers/AutoConfiguration.h"
32#include "src/core/helpers/MemoryHelpers.h"
Georgios Pinitas7891a732021-08-20 21:39:25 +010033#include "src/cpu/utils/CpuAuxTensorHandler.h"
Michele Di Giorgio4dfc5532021-06-30 12:05:34 +010034
35using namespace arm_compute::experimental;
36using namespace arm_compute::misc::shape_calculator;
37
38namespace arm_compute
39{
40namespace cpu
41{
42namespace
43{
44cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
45{
46 cpu::AsmGemmInfo asm_info;
47 asm_info.method = cpu::AsmConvMethod::Im2Col;
48 asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
49 asm_info.depth_output_gemm3d = info.depth_output_gemm3d();
50 asm_info.activation_info = info.activation_info();
Georgios Pinitas4ee8b152021-07-16 16:16:43 +010051 asm_info.fast_mode = info.fast_math();
Michele Di Giorgio4dfc5532021-06-30 12:05:34 +010052
53 return asm_info;
54}
55} // namespace
56
57void CpuGemm::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info)
58{
59 ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
60 ARM_COMPUTE_ERROR_THROW_ON(CpuGemm::validate(a, b, c, d, alpha, beta, gemm_info));
61
62 const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
63 const bool is_c_bias = gemm_info.reshape_b_only_on_first_run();
64 bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, (is_c_bias) ? c : nullptr, d, asm_info));
65
66 // Check if we need to reshape the matrix B only on the first run
67 _is_prepared = false;
68 _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
69 _run_vector_matrix_multiplication = a->dimension(1) < 2;
70 _run_alpha_scale = alpha != 1.f;
71 _run_bias_addition = c != nullptr && gemm_info.reshape_b_only_on_first_run();
72 _run_addition = beta != 0 && c != nullptr && !gemm_info.reshape_b_only_on_first_run();
73 _run_activation = gemm_info.activation_info().enabled() && (!run_optimised || (run_optimised
74 && !cpu::CpuGemmAssemblyDispatch::is_activation_supported(gemm_info.activation_info())));
75
76 if(run_optimised)
77 {
78 const ITensorInfo *c_to_use = is_c_bias ? c : nullptr;
79 _asm_glue = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
80 _asm_glue->configure(a, b, c_to_use, d, asm_info);
81 ARM_COMPUTE_ERROR_ON(!_asm_glue->is_configured());
82
83 auto asm_mem_req = _asm_glue->workspace();
84 _aux_mem[AsmGemmWorkspace] = asm_mem_req[AsmGemmWorkspace];
85 _aux_mem[Pretraspose] = asm_mem_req[Pretraspose];
86
87 // Scale product by alpha
88 if(_run_alpha_scale)
89 {
90 _alpha_scale_func = std::make_unique<cpu::CpuActivation>();
91 _alpha_scale_func->configure(d, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, alpha, 0.f));
92 }
93 }
94 else
95 {
96 // Pick output tensor in case bias addition should be performed
97 ITensorInfo *gemm_output_to_use = (_run_bias_addition) ? &_tmp_d : d;
98
99 _mm_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixMultiplyKernel>();
100
101 // Select between GEMV and GEMM
102 if(_run_vector_matrix_multiplication)
103 {
104 // Configure the matrix multiply kernel
105 _mm_kernel->configure(a, b, gemm_output_to_use, alpha, false);
106 }
107 else
108 {
109 const int m = a->dimension(1);
110 const int n = b->dimension(0);
111 const int k = a->dimension(0);
112
113 // Configure interleave kernel
114 _interleave_kernel = std::make_unique<cpu::kernels::CpuGemmInterleave4x4Kernel>();
115 _interleave_kernel->configure(a, &_tmp_a);
116 _aux_mem[InterleavedLHS] = MemoryInfo(offset_int_vec(InterleavedLHS), MemoryLifetime::Temporary, _tmp_a.total_size());
117
118 // Configure transpose kernel
119 _transpose_kernel = std::make_unique<cpu::kernels::CpuGemmTranspose1xWKernel>();
120 _transpose_kernel->configure(b, &_tmp_b);
121 _aux_mem[TransposedRHS] = MemoryInfo(offset_int_vec(TransposedRHS), MemoryLifetime::Persistent, _tmp_b.total_size());
122
123 // Configure matrix multiplication kernel
124 _mm_kernel->configure(&_tmp_a, &_tmp_b, gemm_output_to_use, alpha, true, GEMMReshapeInfo(m, n, k));
125 }
126
127 if(_run_bias_addition)
128 {
129 _add_bias = std::make_unique<cpu::CpuAdd>();
130 _add_bias->configure(gemm_output_to_use, c, d, ConvertPolicy::SATURATE);
Michele Di Giorgiod9cdf142021-07-02 15:17:08 +0100131 _aux_mem[TempResult] = MemoryInfo(offset_int_vec(TempResult), MemoryLifetime::Temporary, _tmp_d.total_size());
Michele Di Giorgio4dfc5532021-06-30 12:05:34 +0100132 }
133 }
134
135 // Configure matrix addition kernel
136 if(_run_addition)
137 {
138 _ma_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixAdditionKernel>();
139 _ma_kernel->configure(c, d, beta);
140 }
141
142 // Configure activation
143 if(_run_activation)
144 {
145 _activation_func = std::make_unique<cpu::CpuActivation>();
146 _activation_func->configure(d, nullptr, gemm_info.activation_info());
147 }
148}
149
150Status CpuGemm::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, float alpha, float beta, const GEMMInfo &gemm_info)
151{
152 ARM_COMPUTE_UNUSED(alpha);
153 const bool is_c_bias = gemm_info.reshape_b_only_on_first_run();
154
155 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
156 ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
157 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::BFLOAT16, DataType::F16, DataType::F32);
158 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
159 ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
160 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
161 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
162 if(a->data_type() != DataType::BFLOAT16)
163 {
164 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, d);
165 }
166
167 if(c != nullptr && !is_c_bias)
168 {
169 ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0);
170 ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d());
171 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(c, d);
172 ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1), "The C matrix must have the same number of rows as the matrix A");
173 ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->dimension(0), "The C matrix must have the same number of columns as the matrix B");
174 }
175
176 if(d->total_size() != 0)
177 {
178 ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != d->dimension(0));
179 if(gemm_info.depth_output_gemm3d() != 0)
180 {
181 if(gemm_info.reinterpret_input_as_3d())
182 {
183 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
184 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != d->dimension(2));
185 }
186 else
187 {
188 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1) * d->dimension(2));
189 }
190 }
191 else
192 {
193 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
194 }
195 }
196
197 // Check if we need to run the optimized assembly kernel
198 cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
199 const bool run_optimised = bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, is_c_bias ? c : nullptr, d, asm_info));
200
201 if(!run_optimised)
202 {
203 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "CpuGemm cannot reinterpret the input tensor as 3D");
204 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "CpuGemm cannot reinterpret the output tensor as 3D");
205
206 // Check if the first input tensor is a vector.
207 const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
208 // Check if we need to reshape the matrix A and matrix B
209 const bool run_interleave_transpose = !run_vector_matrix_multiplication && !(gemm_info.reshape_b_only_on_first_run());
210
211 // Arguments used by GEMMReshapeInfo
212 // If we pass the matrix A and matrix B reshaped to CpuGemmMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GEMMReshapeInfo
213 // in order to know how the matrices have been reshaped
214 const int m = a->dimension(1);
215 const int n = b->dimension(0);
216 const int k = a->dimension(0);
217 int mult_transpose1xW_width = 1;
218 int mult_interleave4x4_height = 1;
219
220 const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d());
221
222 const ITensorInfo *matrix_a_info = a;
223 const ITensorInfo *matrix_b_info = b;
224
225 TensorInfo tmp_a_info{};
226 TensorInfo tmp_b_info{};
227 TensorInfo tmp_output_info = *d->clone();
228
229 if(run_interleave_transpose)
230 {
231 matrix_a_info = &tmp_a_info;
232 matrix_b_info = &tmp_b_info;
233
234 // Validate interleave kernel
235 auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
236 ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmInterleave4x4Kernel::validate(a, &tmp_a_info));
237
238 // Validate transpose kernel
239 auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width)));
240 ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmTranspose1xWKernel::validate(b, &tmp_b_info));
241 }
242
243 // Validate matrix multiply
244 auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info)));
245 ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info));
246
247 if(c != nullptr && gemm_info.reshape_b_only_on_first_run())
248 {
249 ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuAdd::validate(&tmp_output_info, c, d, ConvertPolicy::SATURATE));
250 }
251 }
252
253 // Validate matrix addition kernel
254 if(beta != 0 && c != nullptr && !is_c_bias)
255 {
256 ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixAdditionKernel::validate(c, d, beta));
257 }
258
259 // Validate activation
260 const ActivationLayerInfo &activation = gemm_info.activation_info();
261 if(activation.enabled())
262 {
263 ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuActivation::validate(d, nullptr, activation));
264 }
265
266 return Status{};
267}
268
269void CpuGemm::run(ITensorPack &tensors)
270{
271 prepare(tensors);
272
273 auto a = tensors.get_const_tensor(ACL_SRC_0);
274 auto b = tensors.get_const_tensor(ACL_SRC_1);
275 auto c = tensors.get_const_tensor(ACL_SRC_2);
276 auto d = tensors.get_tensor(ACL_DST);
277
278 if(_asm_glue->is_configured())
279 {
280 // Pass c to asm dispatch only if it's the bias tensor
281 ITensorPack asm_pack = tensors;
282 asm_pack.add_const_tensor(ACL_SRC_2, (_reshape_b_only_on_first_run) ? c : nullptr);
283 _asm_glue->run(asm_pack);
284 if(_run_alpha_scale)
285 {
286 ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } };
287 _alpha_scale_func->run(pack);
288 }
289 }
290 else
291 {
292 CpuAuxTensorHandler interleaved_a(offset_int_vec(InterleavedLHS), _tmp_a, tensors, true);
293 CpuAuxTensorHandler transposed_b(offset_int_vec(TransposedRHS), _tmp_b, tensors, true);
294 CpuAuxTensorHandler temp_d(offset_int_vec(TempResult), _tmp_d, tensors, true);
295
296 ITensorPack mm_pack{ { ACL_SRC_0, a }, { ACL_SRC_1, b }, { ACL_DST, (_run_bias_addition) ? temp_d.get() : d } };
297 if(!_run_vector_matrix_multiplication)
298 {
299 // Run interleave kernel
300 ITensorPack interleave_pack{ { ACL_SRC, a }, { ACL_DST, interleaved_a.get() } };
301 NEScheduler::get().schedule_op(_interleave_kernel.get(), Window::DimY, _interleave_kernel->window(), interleave_pack);
302
303 if(!_reshape_b_only_on_first_run)
304 {
305 // Run transpose kernel
306 ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } };
307 NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack);
308 }
309
310 // Use reshaped matrices
311 mm_pack.add_const_tensor(ACL_SRC_0, interleaved_a.get());
312 mm_pack.add_const_tensor(ACL_SRC_1, transposed_b.get());
313 }
314
315 NEScheduler::get().schedule_op(_mm_kernel.get(), _run_vector_matrix_multiplication ? Window::DimX : Window::DimY, _mm_kernel->window(), mm_pack);
316
317 // Run bias addition kernel
318 if(_run_bias_addition)
319 {
320 ITensorPack pack{ { ACL_SRC_0, temp_d.get() }, { ACL_SRC_1, c }, { ACL_DST, d } };
321 _add_bias->run(pack);
322 }
323 }
324
325 // Run matrix addition kernel
326 if(_run_addition)
327 {
328 ITensorPack c_add_pack{ { ACL_SRC, c }, { ACL_DST, d } };
329 NEScheduler::get().schedule_op(_ma_kernel.get(), Window::DimY, _ma_kernel->window(), c_add_pack);
330 }
331
332 // Run activation function
333 if(_run_activation)
334 {
335 ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } };
336 _activation_func->run(pack);
337 }
338}
339
340void CpuGemm::prepare(ITensorPack &tensors)
341{
342 if(!_is_prepared)
343 {
344 if(_asm_glue->is_configured())
345 {
346 _asm_glue->prepare(tensors);
347 }
348 else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication)
349 {
350 const ITensor *b = tensors.get_const_tensor(ACL_SRC_1);
351 ITensor *b_aux = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(TransposedRHS)));
352 ARM_COMPUTE_ERROR_ON_NULLPTR(b, b_aux);
353
354 CpuAuxTensorHandler transposed_b(_tmp_b, *b_aux);
355 ITensorPack transpose_pack{ { ACL_SRC, b }, { ACL_DST, transposed_b.get() } };
356 NEScheduler::get().schedule_op(_transpose_kernel.get(), Window::DimY, _transpose_kernel->window(), transpose_pack);
357 }
358 _is_prepared = true;
359 }
360}
361
362experimental::MemoryRequirements CpuGemm::workspace() const
363{
364 return _aux_mem;
365}
366} // namespace cpu
367} // namespace arm_compute