blob: efe1655d4527456fc4155d925f44311de2789bf9 [file] [log] [blame]
Diana Biteb7f4a952020-02-06 22:12:07 +00001/*
Michele Di Giorgiod9eaf612020-07-08 11:12:57 +01002 * Copyright (c) 2020 Arm Limited.
Diana Biteb7f4a952020-02-06 22:12:07 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/Types.h"
25#include "arm_compute/core/WindowIterator.h"
26#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
27#include "arm_compute/runtime/NEON/NEFunctions.h"
28#include "arm_compute/runtime/NEON/NEScheduler.h"
29#include "utils/Utils.h"
30#include "support/ToolchainSupport.h"
31
32#include <cstdlib>
33
34using namespace arm_compute;
35using namespace utils;
36
37// Find min and max value in a float array
38void find_min_max(int size, const float *data, float *min, float *max)
39{
40 *min = *max = data[0];
41 for(int i = 0; i < size; i++)
42 {
43 const float val = data[i];
44 *min = std::min(*min, val);
45 *max = std::max(*max, val);
46 }
47}
48
49// Return reasonable quantisation parameters to use for an array of floats
50// based on min and max values
51QuantizationInfo choose_quantization_params(float min, float max)
52{
53 // Extend the [min,max] interval to contain 0 so we can represent it exactly
54 min = std::min(min, 0.f);
55 max = std::max(max, 0.f);
56
57 // Set the quantized min and max in float values
58 const float qmin = 0;
59 const float qmax = 255;
60
61 // Determine the scale
62 const float scale = (max - min) / (qmax - qmin);
63
64 // Determine the zero-point; using affine equation val = (qval-zerop) * scale
65 const float zero_point_real = qmin - min / scale;
66
67 // But we need to nudge the zero_point to an integer (exact quantized value)
68 std::uint8_t zero_point_nudged = 0;
69 if(zero_point_real < qmin)
70 {
71 zero_point_nudged = qmin;
72 }
73 else if(zero_point_real > qmax)
74 {
75 zero_point_nudged = qmax;
76 }
77 else
78 {
79 zero_point_nudged = static_cast<std::uint8_t>(support::cpp11::round(zero_point_real));
80 }
81
82 QuantizationInfo qinfo = QuantizationInfo(scale, zero_point_nudged);
83 return qinfo;
84}
85
86void quantize_values(int size, qasymm8_t *output, float *input, const QuantizationInfo qinfo)
87{
88 for(int i = 0; i < size; i++)
89 {
90 output[i] = quantize_qasymm8(input[i], qinfo);
91 }
92 std::cout << "\n";
93}
94
95int main(int argc, char **argv)
96{
97 Tensor src1;
98 Tensor src2;
99 Tensor dst0;
100 Tensor q_src1;
101 Tensor q_src2;
102 Tensor q_dst0;
103 Tensor q_res;
104 Tensor q_res_output;
105 size_t M = 4;
106 size_t N = 4;
107 size_t K = 4;
108 bool default_input = true;
109
110 // Parse args
111 if(argc < 3) /* case default matrix sizes */
112 {
113 // Print help
114 std::cout << "Usage: ./build/neon_gemm_qasymm8 M N K\n";
115 std::cout << "Too few or no inputs provided. Using default M=4, N=4, K=4\n\n";
116 }
117 else /* case M N K arguments provided */
118 {
119 M = strtol(argv[1], nullptr, 10);
120 N = strtol(argv[2], nullptr, 10);
121 K = strtol(argv[3], nullptr, 10);
122 default_input = false;
123 }
124
125 /*** Floating point matrix multiplication ***/
126
127 // Initialise input matrices
128 NEGEMM fgemm{};
129
130 src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32));
131 src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32));
132 dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
133 fgemm.configure(&src1, &src2, nullptr, &dst0, 1, 0);
134
135 // Allocate matrices
136 src1.allocator()->allocate();
137 src2.allocator()->allocate();
138 dst0.allocator()->allocate();
139
140 // Fill in tensors, by default fill in with known data - for easy testing
141 auto *src1_ptr = reinterpret_cast<float *>(src1.buffer());
142 auto *src2_ptr = reinterpret_cast<float *>(src2.buffer());
143 auto *dst0_ptr = reinterpret_cast<float *>(dst0.buffer());
144
145 // Fill in: one is the identity matrix, other is sequential values
146 // src1: Identity matrix
147 for(size_t i = 0; i < M * K; i++) {
148 src1_ptr[i] = 0;
149 }
150 for(size_t i = 0; i < M; i++) {
151 src1_ptr[i * K + i] = 1.0f;
152 }
153
154 // src2: Sequential values matrix
155 for(size_t i = 0; i < K * N; i++) {
156 src2_ptr[i] = i * 1.123f;
157 }
158
159 // Otherwise if M, N, K is given, fill in with random values
160 if(!default_input)
161 {
162 fill_random_tensor(src1, 0.f, 1.f);
163 fill_random_tensor(src2, 0.f, 1.f);
164 }
165
166 // Run single precision gemm and print result
167 fgemm.run();
168
169#if ARM_COMPUTE_DEBUG_ENABLED
170 std::cout << "Result matrix:\n";
171 src1.print(std::cout);
172 src2.print(std::cout);
173 dst0.print(std::cout);
174#endif // ARM_COMPUTE_DEBUG_ENABLED
175
176 /*** Quantised asymmetric 8bit matrix multiplication ***/
177
178 // Start by finding the quantisation parameters for each set of values
179 float src1_min;
180 float src1_max;
181 float src2_min;
182 float src2_max;
183 float dst0_min;
184 float dst0_max;
185
186 find_min_max(M * K, src1_ptr, &src1_min, &src1_max);
187 find_min_max(K * N, src2_ptr, &src2_min, &src2_max);
188 find_min_max(M * N, dst0_ptr, &dst0_min, &dst0_max);
189
190 const QuantizationInfo src1_qinfo = choose_quantization_params(src1_min, src1_max);
191 const QuantizationInfo src2_qinfo = choose_quantization_params(src2_min, src2_max);
192 const QuantizationInfo dst0_qinfo = choose_quantization_params(dst0_min, dst0_max);
193
194 std::cout << "Matrix 1: min=" << src1_min << ", max=" << src1_max << ", ";
195 std::cout << "QuantisationInfo(" << src1_qinfo.scale()[0] << ", " << src1_qinfo.offset()[0] << ")\n";
196 std::cout << "Matrix 2: min=" << src2_min << ", max=" << src2_max << ", ";
197 std::cout << "QuantisationInfo(" << src2_qinfo.scale()[0] << ", " << src2_qinfo.offset()[0] << ")\n";
198 std::cout << "Result : min=" << dst0_min << ", max=" << dst0_max << ", ";
199 std::cout << "QuantisationInfo(" << dst0_qinfo.scale()[0] << ", " << dst0_qinfo.offset()[0] << ")\n";
200
201 // We now have the quantisation info and can configure the quantised tensors
202 q_src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::QASYMM8, src1_qinfo));
203 q_src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::QASYMM8, src2_qinfo));
204 q_dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::QASYMM8, dst0_qinfo));
205
206 // In this approach we use the QuantizationLayer construct to perform quantization
207 NEQuantizationLayer q1;
208 NEQuantizationLayer q2;
209 NEQuantizationLayer q3;
210 q1.configure(&src1, &q_src1);
211 q2.configure(&src2, &q_src2);
212 q3.configure(&dst0, &q_dst0);
213
214 // Configure low precision gemm and initialise result tensor (pre-output)
215 NEGEMMLowpMatrixMultiplyCore qgemm;
216 q_res.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::S32));
217 qgemm.configure(&q_src1, &q_src2, nullptr, &q_res);
218
219 // Configure output stage after computing shift and multiplier parameters
220 NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint gemmlowp_output_stage;
221 int output_multiplier;
222 int output_shift;
223 float multiplier = (src1_qinfo.uniform().scale * src2_qinfo.uniform().scale) / dst0_qinfo.uniform().scale;
224 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
225 std::cout << "(q_multiplier, q_shift) = (" << output_multiplier << ", " << output_shift << ")\n\n";
226 gemmlowp_output_stage.configure(&q_res, nullptr, &q_res_output, output_multiplier, output_shift, dst0_qinfo.uniform().offset);
227
228 // Allocate all tensors
229 q_src1.allocator()->allocate();
230 q_src2.allocator()->allocate();
231 q_dst0.allocator()->allocate();
232 q_res.allocator()->allocate();
233 q_res_output.allocator()->allocate();
234
235 // Run quantization layers (quantizes values of each tensor)
236 q1.run();
237 q2.run();
238 q3.run();
239 // Run low precision matrix multiply kernel
240 qgemm.run();
241 // Run output stage kernel
242 gemmlowp_output_stage.run();
243 std::cout << "Done\n";
244
245#if ARM_COMPUTE_DEBUG_ENABLED
246 // Print quantized source matrices
247 q_src1.print(std::cout);
248 q_src2.print(std::cout);
249 // Print result matrix in int32 form - before output stage processing
250 std::cout << "Lowp GEMM output (int32):\n";
251 q_res.print(std::cout);
252 // Print QASYMM8 (quantized) matrix
253 std::cout << "Output pipeline result matrix:\n";
254 q_res_output.print(std::cout);
255
256 // Expected result
257 std::cout << "Expected result:\n";
258 q_dst0.print(std::cout);
259#endif // ARM_COMPUTE_DEBUG_ENABLED
260}