blob: 4c8f7973606a74e153f27ee97a926824b5ef580a [file] [log] [blame]
Gian Marco58c57942017-11-28 09:10:03 +00001/*
Pablo Tello54e98d92019-02-05 16:16:19 +00002 * Copyright (c) 2017-2019 ARM Limited.
Gian Marco58c57942017-11-28 09:10:03 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef __ARM_COMPUTE_NEASYMM_H__
25#define __ARM_COMPUTE_NEASYMM_H__
26
27#include <arm_neon.h>
28
29namespace arm_compute
30{
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000031using qasymm8x8_t = uint8x8_t; /**< 8 bit quantized asymmetric vector with 8 elements */
32using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
33using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
34using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
35using qasymm8x16_t = uint8x16_t; /**< 8 bit quantized asymmetric vector with 16 elements */
36
Gian Marco58c57942017-11-28 09:10:03 +000037/** Round to the nearest division by a power-of-two using exponent
38 *
39 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
40 *
41 * @param[in] x Vector of 4 elements
42 * @param[in] exponent Integer value used to round to nearest division by a power-of-two
43 *
44 * @return the nearest division by a power-of-two using exponent
45 */
46int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent);
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000047
George Wort2d7e6832019-02-22 16:37:41 +000048/** Round to the nearest division by a power-of-two using exponent
49 *
50 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
51 *
52 * @param[in] x Element to divide.
53 * @param[in] exponent Integer value used to round to nearest division by a power-of-two
54 *
55 * @return the nearest division by a power-of-two using exponent
56 */
57int32_t rounding_divide_by_pow2(int32_t x, int exponent);
58
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000059/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
60 *
61 * vd*vs + vo
62 *
63 * @param[in] vd Input vector value in QASYMM8 format
64 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
65 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
66 *
67 * @return A 16-component vector in QASYMM8 format, saturated to fit
68 */
69uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);
Georgios Pinitasf72f9362018-01-12 16:29:45 +000070
71/** Performs final quantization step on 16 elements
72 *
73 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
74 *
75 * @param in_s32 Input to be quantized.
76 * @param result_fixedpoint_multiplier Result multiplier parameter
77 * @param result_shift Result shift parameter
78 * @param result_offset_after_shift_s32 Result offset parameter
79 * @param min_u8 Relu lower bound
80 * @param max_u8 Relu upper bound
81 *
82 * @return Quantized values
83 */
84template <bool is_bounded_relu>
85uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
86 int result_fixedpoint_multiplier,
87 int32_t result_shift,
88 int32x4_t result_offset_after_shift_s32,
89 uint8x16_t min_u8,
90 uint8x16_t max_u8)
91{
92 const static int32x4_t zero_s32 = vdupq_n_s32(0);
93
94 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
95 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
96 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
97 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
98 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
99
100 // Round to the nearest division by a power-of-two using result_shift_s32
101 in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
102 in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
103 in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
104 in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
105
106 // Add the offset terms
107 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
108 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
109 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
110 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
111
112 // Saturate negative values
113 in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
114 in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
115 in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
116 in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
117
118 // Convert S32 to S16
119 const int16x8x2_t in_s16 =
120 {
121 {
122 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
123 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
124 }
125 };
126
127 // Convert S16 to U8
128 uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
129
130 if(is_bounded_relu)
131 {
132 out_u8 = vmaxq_u8(out_u8, min_u8);
133 out_u8 = vminq_u8(out_u8, max_u8);
134 }
135
136 return out_u8;
137}
Pablo Tello54e98d92019-02-05 16:16:19 +0000138
George Wort2d7e6832019-02-22 16:37:41 +0000139/** Performs final quantization step on single element
140 *
141 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
142 *
143 * @param[in] in_value Input to be quantized.
144 * @param[in] result_fixedpoint_multiplier Result multiplier parameter
145 * @param[in] result_shift Result shift parameter
146 * @param[in] result_offset_after_shift_s32 Result offset parameter
147 * @param[in] min_u8 Relu lower bound
148 * @param[in] max_u8 Relu upper bound
149 *
150 * @return Quantized value
151 */
152template <bool is_bounded_relu>
153inline uint8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
154 int32_t result_shift, int32_t result_offset_after_shift_s32,
155 uint8_t min_u8, uint8_t max_u8)
156{
157 int32x4_t in_s32 = vdupq_n_s32(in_value);
158
159 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
160 in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
161
162 // Shift value by result_shift_s32
163 in_value = rounding_divide_by_pow2(in_value, result_shift);
164
165 // Add the offset term
166 in_value += result_offset_after_shift_s32;
167
168 // Bound the result
Georgios Pinitas6fa26382019-03-18 10:05:34 +0000169 uint8_t out_u8 = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
George Wort2d7e6832019-02-22 16:37:41 +0000170 if(is_bounded_relu)
171 {
172 out_u8 = static_cast<uint8_t>(std::max(min_u8, std::min(max_u8, out_u8)));
173 }
174
175 return out_u8;
176}
177
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100178/** Dequantize a neon vector holding 8 quantized values.
179 *
180 * @param[in] qv Input values to be dequantized.
181 * @param[in] qi Quantization information to be used in the computation.
182 *
183 * @return Dequantized values in a neon vector
184 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100185inline float32x4x2_t vdequantize(const uint8x8_t &qv, const UniformQuantizationInfo &qi)
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100186{
187 const float scale = qi.scale;
188 const int offset = qi.offset;
189 const int32x4_t voffset = vdupq_n_s32(offset);
190 const float32x4_t vscale = vdupq_n_f32(scale);
191 const float32x4x2_t vdequantized_input =
192 {
193 {
194 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(qv)))), voffset)), vscale),
195 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(qv)))), voffset)), vscale),
196 }
197 };
198 return vdequantized_input;
199}
200
Pablo Tello54e98d92019-02-05 16:16:19 +0000201/** Dequantize a neon vector holding 16 quantized values.
202 *
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100203 * @param[in] qv Input values to be dequantized.
204 * @param[in] qi Quantization information to be used in the computation.
Pablo Tello54e98d92019-02-05 16:16:19 +0000205 *
206 * @return Dequantized values in a neon vector
207 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100208inline float32x4x4_t vdequantize(const uint8x16_t &qv, const UniformQuantizationInfo &qi)
Pablo Tello54e98d92019-02-05 16:16:19 +0000209{
210 const float scale = qi.scale;
211 const int offset = qi.offset;
212 const int32x4_t voffset = vdupq_n_s32(offset);
213 const float32x4_t vscale = vdupq_n_f32(scale);
214 const float32x4x4_t vdequantized_input =
215 {
216 {
217 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
218 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
219 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
220 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
221 }
222 };
223 return vdequantized_input;
224}
225
Georgios Pinitas3d13af82019-06-04 13:04:16 +0100226/** Dequantize following an asymmetric quantization scheme a neon vector holding 16 quantized values.
227 *
228 * @param[in] qv Input values to be dequantized.
229 * @param[in] scale Quantization scaling factor.
230 * @param[in] offset Zero quantization offset.
231 *
232 * @return Dequantized values in a neon vector
233 */
234inline float32x4x4_t vdequantize(const uint8x16_t &qv, float scale, int32_t offset)
235{
236 const int32x4_t voffset = vdupq_n_s32(offset);
237 const float32x4_t vscale = vdupq_n_f32(scale);
238 const float32x4x4_t vdequantized_input =
239 {
240 {
241 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
242 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
243 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
244 vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
245 }
246 };
247 return vdequantized_input;
248}
249
250/** Dequantize following a symmetric quantization scheme a neon vector holding 16 quantized values.
251 *
252 * @param[in] qv Input values to be dequantized.
253 * @param[in] scale Quantization scaling factor.
254 *
255 * @return Dequantized values in a neon vector
256 */
257inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale)
258{
259 const float32x4_t vscale = vdupq_n_f32(scale);
260 const float32x4x4_t vdequantized_input =
261 {
262 {
263 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
264 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
265 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
266 vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
267 }
268 };
269 return vdequantized_input;
270}
271
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100272/** Quantize a neon vector holding 8 floating point values.
273 *
274 * @param[in] qv Input values to be quantized.
275 * @param[in] qi Quantization information to be used in the computation.
276 *
277 * @return A neon vector holding the quantized values
278 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100279inline uint8x8_t vquantize(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100280{
281 const float scale = qi.scale;
282 const int offset = qi.offset;
283 const float32x4_t voffset = vdupq_n_f32(offset);
284 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
285 const int32x4x4_t rf =
286 {
287 {
288#ifdef __aarch64__
289 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
290 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
291#else //__aarch64__
292 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
293 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
294#endif //__aarch64__
295 }
296 };
297 return vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
298}
299
Pablo Tello54e98d92019-02-05 16:16:19 +0000300/** Quantize a neon vector holding 16 floating point values.
301 *
Georgios Pinitasd66094e2019-04-15 15:44:17 +0100302 * @param[in] qv Input values to be quantized.
303 * @param[in] qi Quantization information to be used in the computation.
Pablo Tello54e98d92019-02-05 16:16:19 +0000304 *
305 * @return A neon vector holding the quantized values
306 */
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100307inline uint8x16_t vquantize(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
Pablo Tello54e98d92019-02-05 16:16:19 +0000308{
309 const float scale = qi.scale;
310 const int offset = qi.offset;
311 const float32x4_t voffset = vdupq_n_f32(offset);
312 const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
313 const int32x4x4_t rf =
314 {
315 {
316#ifdef __aarch64__
317 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
318 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
319 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
320 vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
321#else //__aarch64__
322 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
323 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
324 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
325 vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
326#endif //__aarch64__
327 }
328 };
329 const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
330 const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
331 return vcombine_u8(pa, pb);
332}
Gian Marco58c57942017-11-28 09:10:03 +0000333} // namespace arm_compute
334#include "arm_compute/core/NEON/NEAsymm.inl"
Michel Iwaniec5dfeae62017-11-29 10:48:23 +0000335#endif // __ARM_COMPUTE_NEASYMM_H__