blob: 6aaac818e9f9ea83c92e0e6c460763a388f2357c [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
Manuel Bottini79fa9a22019-02-22 17:54:22 +00002 * Copyright (c) 2016-2019 ARM Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
25
Anthony Barbiereaefd002018-07-20 17:49:35 +010026#include "arm_compute/core/CPP/Validate.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010027#include "arm_compute/core/Error.h"
28#include "arm_compute/core/Helpers.h"
29#include "arm_compute/core/IAccessWindow.h"
30#include "arm_compute/core/ITensor.h"
Manuel Bottini79fa9a22019-02-22 17:54:22 +000031#include "arm_compute/core/NEON/NEAsymm.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010032#include "arm_compute/core/NEON/NEFixedPoint.h"
Manuel Bottini7bb56c62019-06-26 15:17:09 +010033#include "arm_compute/core/NEON/NESymm.h"
giuros01154bc1c2019-03-26 17:44:40 +000034#include "arm_compute/core/NEON/wrapper/wrapper.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010035#include "arm_compute/core/TensorInfo.h"
Manuel Bottini79fa9a22019-02-22 17:54:22 +000036#include "arm_compute/core/Types.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010037#include "arm_compute/core/Validate.h"
Anthony Barbier6ff3b192017-09-04 18:44:23 +010038
39#include <arm_neon.h>
40#include <climits>
41#include <cmath>
42#include <cstdint>
43#include <cstdlib>
44
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +000045#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Pablo Tellodf246182017-07-03 16:25:09 +010046#include <arm_fp16.h> // needed for float16_t
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +000047#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Pablo Tellodf246182017-07-03 16:25:09 +010048
Anthony Barbier6ff3b192017-09-04 18:44:23 +010049namespace arm_compute
50{
51class Coordinates;
Anthony Barbier6ff3b192017-09-04 18:44:23 +010052
53namespace
54{
55const float scale255_constant = 1.f / 255.f;
56const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
57const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
58
Michalis Spyrou861f0db2018-02-26 16:47:58 +000059constexpr unsigned int num_elems_processed_per_iteration = 16;
60
Georgios Pinitas631c41a2017-12-06 11:53:03 +000061inline Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +000062{
63 ARM_COMPUTE_UNUSED(overflow_policy);
64 ARM_COMPUTE_UNUSED(rounding_policy);
65
Anthony Barbiereaefd002018-07-20 17:49:35 +010066 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1);
Manuel Bottini7bb56c62019-06-26 15:17:09 +010067 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
68 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
69 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +000070 ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
71 "Output can only be U8 if both inputs are U8");
72
Manuel Bottini79fa9a22019-02-22 17:54:22 +000073 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::QASYMM8 && input2->data_type() != DataType::QASYMM8,
Manuel Bottini7bb56c62019-06-26 15:17:09 +010074 "Input2 must be QASYMM8 if input1 is QASYMM8");
Manuel Bottini79fa9a22019-02-22 17:54:22 +000075
Manuel Bottini7bb56c62019-06-26 15:17:09 +010076 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() != DataType::QASYMM8 && input2->data_type() == DataType::QASYMM8,
77 "Input1 must be QASYMM8 if input2 is QASYMM8");
78
79 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::QSYMM16 && input2->data_type() != DataType::QSYMM16,
80 "Input2 must be QSYMM16 if input1 is QSYMM16");
81
82 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() != DataType::QSYMM16 && input2->data_type() == DataType::QSYMM16,
83 "Input1 must be QSYMM16 if input2 is QSYMM16");
84
85 ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(input1->data_type()) && overflow_policy == ConvertPolicy::WRAP,
86 "ConvertPolicy cannot be WRAP if datatype is quantized");
Manuel Bottini79fa9a22019-02-22 17:54:22 +000087
88 if(output->total_size() > 0)
89 {
Manuel Bottini7bb56c62019-06-26 15:17:09 +010090 if(is_data_type_quantized(output->data_type()))
Manuel Bottini79fa9a22019-02-22 17:54:22 +000091 {
92 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2, output);
93 }
94
95 const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
96 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
97 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
98 }
Michalis Spyrou861f0db2018-02-26 16:47:58 +000099
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000100 if(std::abs(scale - scale255_constant) < 0.00001f)
101 {
102 ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
103 }
104 else
105 {
106 ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
107
108 int exponent = 0;
109 const float normalized_mantissa = std::frexp(scale, &exponent);
110
111 // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
112 // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
113 // Moreover, it will be negative as we deal with 1/2^n
114 ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255");
115 }
116
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000117 return Status{};
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000118}
119
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000120inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000121{
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000122 const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
123 const ValidRegion &valid_region = broadcast_pair.second;
124
125 // Auto initialize output if not initialized
126 {
127 set_shape_if_empty(*output, input1->tensor_shape());
128
129 if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
130 {
131 set_format_if_unknown(*output, Format::S16);
132 }
133 else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
134 {
135 set_format_if_unknown(*output, Format::F32);
136 }
137 else if(input1->data_type() == DataType::F16 || input2->data_type() == DataType::F16)
138 {
139 set_format_if_unknown(*output, Format::F16);
140 }
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100141 else if(input1->data_type() == DataType::QASYMM8)
142 {
143 set_data_type_if_unknown(*output, DataType::QASYMM8);
144 }
145 else if(input1->data_type() == DataType::QSYMM16)
146 {
147 set_data_type_if_unknown(*output, DataType::QSYMM16);
148 }
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000149 }
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000150
151 // Configure kernel window
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000152 Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
153 Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
154 Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
155
156 AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
157 AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000158 AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
159
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000160 bool window_changed = update_window_and_padding(win_input1, input1_access)
161 || update_window_and_padding(win_input2, input2_access)
162 || update_window_and_padding(win, output_access);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000163
164 output_access.set_valid_region(win, valid_region);
165
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000166 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000167 return std::make_pair(err, win);
168}
169
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100170/* Scales a given vector by 1/255.
171 *
172 * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
173 *
174 * @param in Input vector to scale.
175 * @return Scaled output rounded to nearest (round half up).
176 */
177inline int32x4_t scale255_S32_S32(int32x4_t in)
178{
179 // Scale
180 const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
181 // Round to nearest (round half up)
182 // Add +0.5 for all values
183 // Afterwards vcvt rounds toward zero
184 return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
185}
186
187inline uint16x8_t scale255_U16_U16(uint16x8_t in)
188{
189 const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
190 const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
191 return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
192}
193
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000194void mul_saturate_QASYMM8_QASYMM8_QASYMM8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale,
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100195 const UniformQuantizationInfo &input1_qua_info, const UniformQuantizationInfo &input2_qua_info, const UniformQuantizationInfo &output_qua_info)
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000196{
197 const auto input1 = static_cast<const qasymm8_t *__restrict>(input1_ptr);
198 const auto input2 = static_cast<const qasymm8_t *__restrict>(input2_ptr);
199 const auto output = static_cast<qasymm8_t *__restrict>(output_ptr);
200
201 const qasymm8x16_t input1_q = vld1q_u8(input1);
202 const qasymm8x16_t input2_q = vld1q_u8(input2);
203
204 // Dequantitize inputs
205 const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
206 const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
207
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100208 const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000209
210 const float32x4x4_t out_f32x4x4 =
211 {
212 vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
213 vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
214 vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
215 vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3])
216 };
217
218 const uint8x16_t result = vquantize(out_f32x4x4, tmp_qua_info);
219 vst1q_u8(output, result);
220}
221
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100222void mul_saturate_QSYMM16_QSYMM16_QSYMM16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale,
223 const UniformQuantizationInfo &input1_qua_info, const UniformQuantizationInfo &input2_qua_info, const UniformQuantizationInfo &output_qua_info)
224{
225 const auto input1 = static_cast<const qsymm16_t *__restrict>(input1_ptr);
226 const auto input2 = static_cast<const qsymm16_t *__restrict>(input2_ptr);
227 const auto output = static_cast<qsymm16_t *__restrict>(output_ptr);
228
229 const qsymm16x8x2_t input1_q = vld2q_s16(input1);
230 const qsymm16x8x2_t input2_q = vld2q_s16(input2);
231
232 // Dequantitize inputs
233 const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
234 const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
235
236 const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
237
238 const float32x4x4_t out_f32x4x4 =
239 {
240 vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
241 vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
242 vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
243 vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
244 };
245
246 const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info);
247 vst2q_s16(output, result);
248}
249
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100250template <bool is_scale255, bool is_sat>
251void mul_U8_U8_U8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
252{
253 const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
254 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
255 const auto output = static_cast<uint8_t *__restrict>(output_ptr);
256
257 const uint8x16_t ta1 = vld1q_u8(input1);
258 const uint8x16_t ta2 = vld1q_u8(input2);
259
260 uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
261 const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
262 uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
263 const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
264
265 tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
266 tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
267
268 if(is_scale255)
269 {
270 tmp1_high = scale255_U16_U16(tmp1_high);
271 tmp1_low = scale255_U16_U16(tmp1_low);
272 }
273 else
274 {
275 const int16x8_t vn = vdupq_n_s16(-n);
276
277 if(is_sat)
278 {
279 tmp1_high = vqshlq_u16(tmp1_high, vn);
280 tmp1_low = vqshlq_u16(tmp1_low, vn);
281 }
282 else
283 {
284 tmp1_high = vshlq_u16(tmp1_high, vn);
285 tmp1_low = vshlq_u16(tmp1_low, vn);
286 }
287 }
288
289 if(is_sat)
290 {
291 vst1q_u8(output, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
292 }
293 else
294 {
295 vst1q_u8(output, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
296 }
297}
298
299template <bool is_scale255, bool is_sat>
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100300inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n)
301{
302 int32x4_t tmp1_high = vmovl_s16(vget_high_s16(input1));
303 const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2));
304 int32x4_t tmp1_low = vmovl_s16(vget_low_s16(input1));
305 const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(input2));
306
307 tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
308 tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
309
310 if(is_scale255)
311 {
312 tmp1_high = scale255_S32_S32(tmp1_high);
313 tmp1_low = scale255_S32_S32(tmp1_low);
314 }
315 else
316 {
317 // Right shift amount
318 const int32x4_t vn = vdupq_n_s32(-n);
319 // Left shift amount
320 const int32x4_t vnl = vdupq_n_s32(n);
321 // Calculate conversion bit
322 const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
323 const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
324 const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
325 const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
326 const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
327 const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
328 const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
329 const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
330 if(is_sat)
331 {
332 tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
333 tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
334 }
335 else
336 {
337 tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
338 tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
339 }
340 }
341
342 if(is_sat)
343 {
344 return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
345 }
346 else
347 {
348 return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
349 }
350}
351
352template <bool is_scale255, bool is_sat>
353inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n)
354{
355 const int16x8x2_t result =
356 {
357 {
358 // First 8 elements
359 mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[0], input2.val[0], n),
360 // Second 8 elements
361 mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[1], input2.val[1], n)
362 }
363 };
364
365 return result;
366}
367
368template <bool is_scale255, bool is_sat>
369void mul_S16_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
370{
371 const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
372 const auto input2 = static_cast<const int16_t *__restrict>(input2_ptr);
373 const auto output = static_cast<int16_t *__restrict>(output_ptr);
374
375 const int16x8x2_t ta1 = vld2q_s16(input1);
376 const int16x8x2_t ta2 = vld2q_s16(input2);
377 const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
378
379 vst2q_s16(output, result);
380}
381
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100382void mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
383{
384 const auto input1 = static_cast<const float *__restrict>(input1_ptr);
385 const auto input2 = static_cast<const float *__restrict>(input2_ptr);
386 const auto output = static_cast<float *__restrict>(output_ptr);
387
388 const float32x4x4_t ta1 = vld4q_f32(input1);
389 const float32x4x4_t ta2 = vld4q_f32(input2);
390 const float32x4_t scale_vec = vdupq_n_f32(scale);
391 const float32x4x4_t result =
392 {
393 {
394 vmulq_f32(vmulq_f32(ta1.val[0], ta2.val[0]), scale_vec),
395 vmulq_f32(vmulq_f32(ta1.val[1], ta2.val[1]), scale_vec),
396 vmulq_f32(vmulq_f32(ta1.val[2], ta2.val[2]), scale_vec),
397 vmulq_f32(vmulq_f32(ta1.val[3], ta2.val[3]), scale_vec)
398 }
399 };
400 vst4q_f32(output, result);
401}
402
giuros01154bc1c2019-03-26 17:44:40 +0000403void c_mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr)
404{
405 const auto input1 = static_cast<const float *__restrict>(input1_ptr);
406 const auto input2 = static_cast<const float *__restrict>(input2_ptr);
407 const auto output = static_cast<float *__restrict>(output_ptr);
408
409 const float32x4_t a = wrapper::vloadq(input1);
410 float32x4_t b = wrapper::vloadq(input2);
411
412 using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
413
414 const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f };
415 const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
416 const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
417 const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
418 const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
419
420 const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
421 const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
422
423 float32x4_t res = wrapper::vmul(tmp0, b);
424
425 b = wrapper::vrev64(b);
426 b = wrapper::vmul(b, mask);
427
428 res = wrapper::vmla(res, tmp1, b);
429 wrapper::vstore(output, res);
430}
431
Pablo Tellodf246182017-07-03 16:25:09 +0100432void mul_F16_F16_F16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
433{
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000434#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Pablo Tellodf246182017-07-03 16:25:09 +0100435 const auto input1 = static_cast<const float16_t *__restrict>(input1_ptr);
436 const auto input2 = static_cast<const float16_t *__restrict>(input2_ptr);
437 const auto output = static_cast<float16_t *__restrict>(output_ptr);
438 const float16x8x2_t ta1 = vld2q_f16(input1);
439 const float16x8x2_t ta2 = vld2q_f16(input2);
440 const float16x8_t scale_vec = vdupq_n_f16(scale);
441 const float16x8x2_t result =
442 {
443 {
444 vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec),
445 vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec),
446 }
447 };
448 vst2q_f16(output, result);
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000449#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Georgios Pinitas30f02152017-09-27 11:20:48 +0100450 ARM_COMPUTE_UNUSED(input1_ptr);
451 ARM_COMPUTE_UNUSED(input2_ptr);
452 ARM_COMPUTE_UNUSED(output_ptr);
453 ARM_COMPUTE_UNUSED(scale);
Pablo Tellodf246182017-07-03 16:25:09 +0100454 ARM_COMPUTE_ERROR("Not supported. Recompile the library with arch=arm64-v8.2-a.");
Ioan-Cristian Szabo5edbd1c2017-11-13 13:34:08 +0000455#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
Pablo Tellodf246182017-07-03 16:25:09 +0100456}
457
458template <bool is_scale255, bool is_sat>
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100459void mul_U8_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
460{
461 const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
462 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
463 const auto output = static_cast<int16_t *__restrict>(output_ptr);
464
465 const uint8x16_t bv = vld1q_u8(input2);
466 const uint8x16_t av = vld1q_u8(input1);
467
468 uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
469 uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
470 tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
471 tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
472
473 if(is_scale255)
474 {
475 tmp_low = scale255_U16_U16(tmp_low);
476 tmp_high = scale255_U16_U16(tmp_high);
477 }
478 else
479 {
480 const int16x8_t vn = vdupq_n_s16(-n);
481
482 if(is_sat)
483 {
484 tmp_low = vqshlq_u16(tmp_low, vn);
485 tmp_high = vqshlq_u16(tmp_high, vn);
486 }
487 else
488 {
489 tmp_low = vshlq_u16(tmp_low, vn);
490 tmp_high = vshlq_u16(tmp_high, vn);
491 }
492 }
493
494 if(is_sat)
495 {
496 static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
497
498 tmp_low = vminq_u16(tmp_low, max);
499 tmp_high = vminq_u16(tmp_high, max);
500 }
501
502 vst1q_s16(output, vreinterpretq_s16_u16(tmp_low));
503 vst1q_s16(output + 8, vreinterpretq_s16_u16(tmp_high));
504}
505
506template <bool is_scale255, bool is_sat>
507void mul_S16_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
508{
509 const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
510 const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
511 const auto output = static_cast<int16_t *__restrict>(output_ptr);
512
513 const int16x8x2_t ta1 = vld2q_s16(input1);
514 const uint8x8x2_t ta2u = vld2_u8(input2);
515 const int16x8x2_t ta2 =
516 {
517 {
518 vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
519 vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
520 }
521 };
522
523 const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
524
525 vst2q_s16(output, result);
526}
527
528template <bool is_scale255, bool is_sat>
529void mul_U8_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
530{
531 // Simply swap the two input buffers
532 mul_S16_U8_S16_n<is_scale255, is_sat>(input2_ptr, input1_ptr, output_ptr, n);
533}
534} // namespace
535
536NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel()
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100537 : _func_float(nullptr), _func_int(nullptr), _func_quantized(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _scale{ 0 }, _scale_exponent{ 0 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100538{
539}
540
541void NEPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
542{
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000543 ARM_COMPUTE_UNUSED(rounding_policy);
Georgios Pinitasf0dea702017-07-03 18:17:28 +0100544 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
545
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000546 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), scale, overflow_policy, rounding_policy));
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100547
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000548 // Configure kernel window
549 auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
550 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
551
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100552 _input1 = input1;
553 _input2 = input2;
554 _output = output;
555 _scale = scale;
556 _scale_exponent = 0;
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100557 _func_quantized = nullptr;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100558 _func_int = nullptr;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100559 _func_float = nullptr;
560
561 bool is_scale_255 = false;
562 // Check and validate scaling factor
563 if(std::abs(scale - scale255_constant) < 0.00001f)
564 {
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100565 is_scale_255 = true;
566 }
567 else
568 {
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000569 int exponent = 0;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100570
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000571 std::frexp(scale, &exponent);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100572
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000573 // Store the positive exponent. We know that we compute 1/2^n
574 // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
575 _scale_exponent = std::abs(exponent - 1);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100576 }
577
578 const DataType dt_input1 = input1->info()->data_type();
579 const DataType dt_input2 = input2->info()->data_type();
580 const DataType dt_output = output->info()->data_type();
581 const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
582
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000583 if(dt_input1 == DataType::QASYMM8 && dt_input2 == DataType::QASYMM8)
584 {
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100585 _func_quantized = &mul_saturate_QASYMM8_QASYMM8_QASYMM8_n;
586 }
587 else if(dt_input1 == DataType::QSYMM16 && dt_input2 == DataType::QSYMM16)
588 {
589 _func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16_n;
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000590 }
591 else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::U8 == dt_output)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100592 {
593 if(is_scale_255)
594 {
595 _func_int = is_sat ? &mul_U8_U8_U8_n<true, true> : &mul_U8_U8_U8_n<true, false>;
596 }
597 else
598 {
599 _func_int = is_sat ? &mul_U8_U8_U8_n<false, true> : &mul_U8_U8_U8_n<false, false>;
600 }
601 }
602 else if(DataType::S16 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
603 {
604 if(is_scale_255)
605 {
606 _func_int = is_sat ? &mul_S16_S16_S16_n<true, true> : &mul_S16_S16_S16_n<true, false>;
607 }
608 else
609 {
610 _func_int = is_sat ? &mul_S16_S16_S16_n<false, true> : &mul_S16_S16_S16_n<false, false>;
611 }
612 }
613 else if(DataType::S16 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
614 {
615 if(is_scale_255)
616 {
617 _func_int = is_sat ? &mul_S16_U8_S16_n<true, true> : &mul_S16_U8_S16_n<true, false>;
618 }
619 else
620 {
621 _func_int = is_sat ? &mul_S16_U8_S16_n<false, true> : &mul_S16_U8_S16_n<false, false>;
622 }
623 }
624 else if(DataType::U8 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
625 {
626 if(is_scale_255)
627 {
628 _func_int = is_sat ? &mul_U8_S16_S16_n<true, true> : &mul_U8_S16_S16_n<true, false>;
629 }
630 else
631 {
632 _func_int = is_sat ? &mul_U8_S16_S16_n<false, true> : &mul_U8_S16_S16_n<false, false>;
633 }
634 }
635 else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
636 {
637 if(is_scale_255)
638 {
639 _func_int = is_sat ? &mul_U8_U8_S16_n<true, true> : &mul_U8_U8_S16_n<true, false>;
640 }
641 else
642 {
643 _func_int = is_sat ? &mul_U8_U8_S16_n<false, true> : &mul_U8_U8_S16_n<false, false>;
644 }
645 }
Pablo Tellodf246182017-07-03 16:25:09 +0100646 else if(DataType::F16 == dt_input1 && DataType::F16 == dt_input2 && DataType::F16 == dt_output)
647 {
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000648 _func_float = &mul_F16_F16_F16_n;
Pablo Tellodf246182017-07-03 16:25:09 +0100649 _func_int = nullptr;
650 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100651 else if(DataType::F32 == dt_input1 && DataType::F32 == dt_input2 && DataType::F32 == dt_output)
652 {
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000653 _func_float = &mul_F32_F32_F32_n;
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100654 _func_int = nullptr;
655 }
656 else
657 {
658 ARM_COMPUTE_ERROR("You called with the wrong img formats");
659 }
660
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000661 INEKernel::configure(win_config.second);
662}
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100663
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000664Status NEPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
665 RoundingPolicy rounding_policy)
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000666{
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000667 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
Ioan-Cristian Szabo754e9522017-11-28 18:29:43 +0000668 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
669 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100670
Georgios Pinitas631c41a2017-12-06 11:53:03 +0000671 return Status{};
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100672}
673
Moritz Pflanzerc186b572017-09-07 09:48:04 +0100674void NEPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100675{
Moritz Pflanzerc186b572017-09-07 09:48:04 +0100676 ARM_COMPUTE_UNUSED(info);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100677 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
678 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
679
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000680 const TensorShape &in_shape1 = _input1->info()->tensor_shape();
681 const TensorShape &in_shape2 = _input2->info()->tensor_shape();
682 const TensorShape &out_shape = _output->info()->tensor_shape();
683
684 bool can_collapse = true;
685 if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
686 {
687 can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
688 for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
689 {
690 can_collapse = (in_shape1[d] == in_shape2[d]);
691 }
692 }
693
694 bool has_collapsed = false;
695 Window collapsed = can_collapse ? window.collapse_if_possible(INEKernel::window(), Window::DimZ, &has_collapsed) : window;
696
697 const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
698 const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
699
700 Window slice = collapsed.first_slice_window_3D();
701 Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
702 Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
703
704 Iterator input1(_input1, slice_input1);
705 Iterator input2(_input2, slice_input2);
706 Iterator output(_output, slice);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100707
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100708 if(is_data_type_quantized(_input1->info()->data_type()))
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000709 {
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100710 execute_window_loop(collapsed, [&](const Coordinates &)
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000711 {
Manuel Bottini7bb56c62019-06-26 15:17:09 +0100712 (*_func_quantized)(input1.ptr(), input2.ptr(), output.ptr(), _scale,
713 _input1->info()->quantization_info().uniform(), _input2->info()->quantization_info().uniform(), _output->info()->quantization_info().uniform());
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000714 collapsed.slide_window_slice_3D(slice_input1);
715 collapsed.slide_window_slice_3D(slice_input2);
716 },
717 input1, input2, output);
718 }
719 else if(_func_int != nullptr)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100720 {
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100721 execute_window_loop(collapsed, [&](const Coordinates &)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100722 {
723 (*_func_int)(input1.ptr(), input2.ptr(), output.ptr(), _scale_exponent);
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000724 collapsed.slide_window_slice_3D(slice_input1);
725 collapsed.slide_window_slice_3D(slice_input2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100726 },
727 input1, input2, output);
728 }
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100729 else
730 {
731 ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100732 execute_window_loop(collapsed, [&](const Coordinates &)
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100733 {
734 (*_func_float)(input1.ptr(), input2.ptr(), output.ptr(), _scale);
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000735 collapsed.slide_window_slice_3D(slice_input1);
736 collapsed.slide_window_slice_3D(slice_input2);
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100737 },
738 input1, input2, output);
739 }
740}
Michalis Spyrou861f0db2018-02-26 16:47:58 +0000741
742BorderSize NEPixelWiseMultiplicationKernel::border_size() const
743{
744 const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
745 const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
Michalis Spyroua4f378d2019-04-26 14:54:54 +0100746 return BorderSize{ 0, border, 0, 0 };
Anthony Barbiereaefd002018-07-20 17:49:35 +0100747}
giuros01154bc1c2019-03-26 17:44:40 +0000748
749namespace
750{
751constexpr unsigned int num_elems_processed_per_iteration_complex = 2;
752
753Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
754{
755 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
756 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
757
758 const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
759
760 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
761
762 // Validate in case of configured output
763 if(output->total_size() > 0)
764 {
765 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
766 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
767 }
768
769 return Status{};
770}
771
772std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
773{
774 const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
775 const TensorShape &out_shape = broadcast_pair.first;
776 const ValidRegion &valid_region = broadcast_pair.second;
777
778 // Auto initialize output if not initialized
779 const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
780 auto_init_if_empty(*output, out_info);
781
782 Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
783 Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
784 Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
785
786 AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
787 AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
788 AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
789
790 bool window_changed = update_window_and_padding(win_input1, input1_access)
791 || update_window_and_padding(win_input2, input2_access)
792 || update_window_and_padding(win, output_access);
793
794 output_access.set_valid_region(win, valid_region);
795
796 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
797 return std::make_pair(err, win);
798}
799} // namespace
800
801NEComplexPixelWiseMultiplicationKernel::NEComplexPixelWiseMultiplicationKernel()
802 : _input1(nullptr), _input2(nullptr), _output(nullptr)
803{
804}
805
806void NEComplexPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output)
807{
808 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
809 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info()));
810
811 // Configure kernel window
812 auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info());
813 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
814
815 _input1 = input1;
816 _input2 = input2;
817 _output = output;
818
819 // Create kernel
820 INEKernel::configure(win_config.second);
821}
822
823Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
824{
825 ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
826 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
827 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
828
829 return Status{};
830}
831
832void NEComplexPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
833{
834 ARM_COMPUTE_UNUSED(info);
835 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
836 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
837
838 Iterator input1(_input1, window.broadcast_if_dimension_le_one(_input1->info()->tensor_shape()));
839 Iterator input2(_input2, window.broadcast_if_dimension_le_one(_input2->info()->tensor_shape()));
840 Iterator output(_output, window);
841
842 execute_window_loop(window, [&](const Coordinates &)
843 {
844 c_mul_F32_F32_F32_n(input1.ptr(), input2.ptr(), output.ptr());
845 },
846 input1, input2, output);
847}
848
849BorderSize NEComplexPixelWiseMultiplicationKernel::border_size() const
850{
851 const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
852 const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
853 return { 0, border, 0, 0 };
854}
Manuel Bottini79fa9a22019-02-22 17:54:22 +0000855} // namespace arm_compute