blob: b4edece8d58a4dc705b721d869117a23bb61dc52 [file] [log] [blame]
Georgios Pinitascfa2bba2019-06-27 17:00:52 +01001/*
2 * Copyright (c) 2017-2019 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#pragma once
25
26#include <assert.h>
27
28#include <algorithm>
29
30#include "arm_gemm.hpp"
31#include "ndrange.hpp"
32#include "utils.hpp"
33
34#include "mergeresults.hpp"
35#include "transform.hpp"
36
37#ifdef CYCLE_PROFILING
38#include "profiler.hpp"
39#endif
40
41namespace arm_gemm {
42
43// Implementation of the GemmCommon abstract class.
44template<typename strategy, typename To, typename Tr>
45class GemmHybridQuantized : public GemmCommon<To, Tr> {
46 typedef typename strategy::operand_type Toi;
47 typedef typename strategy::result_type Tri;
48
49 /* const properties set by constructor */
50 const CPUInfo * const _ci;
51
52 const unsigned int _Msize;
53 const unsigned int _Nsize;
54 const unsigned int _Ksize;
55
56 const unsigned int _nbatches;
57 const unsigned int _nmulti;
58
59 const bool _trB;
60
61 const Tr _beta;
62
63 /* Blocking info */
64 const unsigned int _k_block;
65 const unsigned int _n_block;
66 const unsigned int _Mround;
67
68 /* Pretransposed buffer. */
69 const Toi *_B_transposed=nullptr;
70
71 const NDRange<4> _window_range;
72
73 ARequantizeLayer32 _qp;
74 int32_t *row_bias = nullptr;
75 int32_t *col_bias = nullptr;
76
77 void *working_space = nullptr;
78
79 unsigned int _nthreads;
80
81 unsigned int get_col_sum_size() const {
82 return _Nsize * _nmulti * sizeof(int32_t);
83 }
84
85 static unsigned int compute_k_block(const GemmArgs<Tr> &args) {
86 // We don't support K blocks as we only temporarily store 32 bit results.
87 return args._Ksize;
88
89 if (args._cfg && args._cfg->inner_block_size) {
90 return args._cfg->inner_block_size;
91 }
92
93 const unsigned int L1_size = args._ci->get_L1_cache_size();
94
95 // k_block: Find out how much of the larger array can be loaded into half the cache.
96 // This should account for associative caches.
97 unsigned int k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
98
99 // Needs to be (at least a single) multiple of the K unroll level.
100 k_block /= strategy::k_unroll();
101 k_block = std::max(k_block, 1U) * strategy::k_unroll();
102
103 // Now tune to presented problem size; this is how many blocks we need.
104 unsigned int numk_blocks = iceildiv(args._Ksize, k_block);
105
106 // So divide the space equally into that many blocks.
107 k_block = iceildiv(args._Ksize, numk_blocks);
108
109 // And round UP to the K unroll level required.
110 k_block = roundup(k_block, strategy::k_unroll());
111
112 return k_block;
113 }
114
115 static unsigned int compute_n_block(const GemmArgs<Tr> &args) {
116 if (args._cfg && args._cfg->outer_block_size) {
117 return args._cfg->outer_block_size;
118 }
119
120 const unsigned int k_block = compute_k_block(args);
121 const unsigned int L2_size = args._ci->get_L2_cache_size();
122
123 // n_block: Work out how many rows (of length k_block) will fit in the L2
124 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
125 unsigned int n_block = (((L2_size * 9) / 10) - (k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
126 (sizeof(Toi) * k_block);
127
128 // Needs to be (at least a single) multiple of the kernel output width.
129 n_block /= strategy::out_width();
130 n_block = std::max(n_block, 1U) * strategy::out_width();
131
132 // And tune to the presented problem size.
133 unsigned int numblocks = iceildiv(args._Nsize, n_block);
134 n_block = iceildiv(args._Nsize, numblocks);
135 n_block = roundup(n_block, strategy::out_width());
136
137 return n_block;
138 }
139
140public:
141 GemmHybridQuantized(GemmHybridQuantized &) = delete;
142 GemmHybridQuantized & operator= (GemmHybridQuantized &) = delete;
143
144 /* Constructor */
145 GemmHybridQuantized(const GemmArgs<Tr> &args, const ARequantizeLayer32 &qp)
146 : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize),
147 _nbatches(args._nbatches), _nmulti(args._nmulti), _trB(args._trB), _beta(args._beta),
148 _k_block(compute_k_block(args)), _n_block(compute_n_block(args)),
149 _Mround(roundup(args._Msize, strategy::out_height())),
150 _window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti),
151 _qp (qp), _nthreads(args._maxthreads) { }
152
153 // Interface implementation - Compulsory functions
154 unsigned int get_window_size() const override {
155 return _window_range.total_size();
156 }
157
158 // This kernel can always be dynamically scheduled.
159 bool supports_dynamic_scheduling() const override {
160 return true;
161 }
162
163 // Execute
164 void execute(unsigned int start, unsigned int end, int threadid) override {
165#ifdef CYCLE_PROFILING
166 profiler prof;
167#endif
168 strategy strat(_ci);
169
170 uintptr_t working_int = reinterpret_cast<uintptr_t>(working_space);
171
172 Tri *result_buffer = reinterpret_cast<Tri *>(working_int + (threadid * strategy::out_height() * _Nsize * sizeof(Tri)));
173
174 /* Make sure we've been set up correctly. */
175 assert(_B_transposed);
176 static_assert(std::is_same<To, Toi>::value, "gemm_native: Operand types must be the same.");
177
178 /* For now, each work item implies all the K for a given output
179 * pixel (so we don't need to synchronize access to the output
180 * array). So separate the loop over K blocks here. */
181 for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
182 unsigned int kmax = std::min(k0 + _k_block, _Ksize);
183 unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll());
184
185 auto p = _window_range.iterator(start, end);
186
187 if (p.done()) {
188 return;
189 }
190
191 do {
192 const unsigned int m_start = p.dim(0) * strategy::out_height();
193 const unsigned int m_end = std::min((p.dim(0) + 1) * strategy::out_height(), _Msize);
194 const unsigned int batch = p.dim(1);
195 const unsigned int n0 = p.dim(2) * _n_block;
196 const unsigned int nmax = std::min(n0 + _n_block, _Nsize);
197 const unsigned int multi = p.dim(3);
198
199 int32_t local_row_sums[strategy::out_height()];
200
201 const Toi *b_panel = _B_transposed +
202 (multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) +
203 (k0 * roundup(_Nsize, strategy::out_width())) +
204 (n0 * kern_k);
205
206 {
207#ifdef CYCLE_PROFILING
208 auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width()));
209#endif
210 strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda,
211 b_panel,
Michalis Spyrou3e183d92019-08-23 15:31:08 +0100212 result_buffer, (nmax-n0),
Georgios Pinitascfa2bba2019-06-27 17:00:52 +0100213 (k0 == 0) ? _beta : static_cast<Tr>(1),
214 (m_end - m_start), (nmax - n0), kern_k);
215 }
216
217 {
218#ifdef CYCLE_PROFILING
219 auto p = prof.ScopedProfiler(PROFILE_ROWSUMS, (m_end - m_start) * _Ksize);
220#endif
221 compute_row_sums(_qp, _Ksize, (m_end - m_start),
222 this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda), this->_lda,
223 local_row_sums);
Georgios Pinitascfa2bba2019-06-27 17:00:52 +0100224 }
225
226 {
227#ifdef CYCLE_PROFILING
228 auto p = prof.ScopedProfiler(PROFILE_QUANTIZE, (m_end - m_start) * _Nsize);
229#endif
230
231 requantize_block_32(_qp, (nmax - n0), (m_end - m_start), result_buffer, (nmax - n0),
232 this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc,
Georgios Pinitascfa2bba2019-06-27 17:00:52 +0100233 local_row_sums, col_bias + (multi * _Nsize) + n0);
234 }
235 } while (p.next_dim0());
236 }
237 }
238
239 // Working space needed for intermediate result buffers.
240 size_t get_working_size() const override {
241 return (_nthreads * strategy::out_height() * _Nsize * sizeof(Tri));
242 }
243
244 void set_working_space(void *buffer) override {
245 working_space = buffer;
246 }
247
248 // Interface implementation - pretransposed
249 bool B_is_pretransposed() const override {
250 return true;
251 }
252
253 bool B_pretranspose_required() const override {
254 return (_B_transposed==nullptr);
255 }
256
257 size_t get_B_pretransposed_array_size() const override {
258 return get_col_sum_size() + (roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi));
259 }
260
261 void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
262 col_bias = reinterpret_cast<int32_t *>(in_buffer);
263
264 for (unsigned int i=0; i<_nmulti; i++) {
265 compute_col_sums(_qp, _Nsize, _Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _Nsize), _Ksize, 0);
266 }
267
268 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
269 Toi *buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
270 _B_transposed = buffer;
271 strategy strat(_ci);
272
273 for (unsigned int multi=0; multi<_nmulti; multi++) {
274 for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
275 const unsigned int kmax = std::min(k0 + _k_block, _Ksize);
276 const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll());
277
278 for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) {
279 const unsigned int xmax = std::min(x0+_n_block, _Nsize);
280
281 const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size;
282
283 strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb,
284 x0, xmax, k0, kmax, _trB);
285
286 buffer += size;
287 }
288 }
289 }
290 }
291
292 void set_pretransposed_B_data(void *in_buffer) override {
293 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
294 _B_transposed = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
295 col_bias = reinterpret_cast<int32_t *>(in_buffer);
296 }
297
298 void set_quantized_bias(const int32_t *bias) override {
299 _qp.bias = bias;
300 }
301};
302
303} // namespace arm_gemm