blob: aec9da193b2239402e0c76e3ea6dadd297e40626 [file] [log] [blame]
Manuel Bottinicfac51c2021-06-18 15:47:28 +01001/*
Mohammed Suhail Munshi4b5f6ef2022-10-21 11:15:54 +01002 * Copyright (c) 2021-2022 Arm Limited.
Manuel Bottinicfac51c2021-06-18 15:47:28 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Georgios Pinitas7891a732021-08-20 21:39:25 +010024#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
Manuel Bottinicfac51c2021-06-18 15:47:28 +010025
26#include "arm_compute/core/Error.h"
27#include "arm_compute/core/Helpers.h"
28#include "arm_compute/core/ITensor.h"
29#include "arm_compute/core/KernelDescriptors.h"
30#include "arm_compute/core/Types.h"
31#include "arm_compute/core/Validate.h"
32#include "arm_compute/core/utils/misc/ShapeCalculator.h"
33#include "arm_compute/runtime/NEON/NEScheduler.h"
34#include "arm_compute/runtime/TensorAllocator.h"
35#include "src/core/helpers/AutoConfiguration.h"
36#include "src/core/helpers/MemoryHelpers.h"
37
ramelg013ae3d882021-09-12 23:07:47 +010038#include "src/common/utils/Log.h"
Georgios Pinitas7891a732021-08-20 21:39:25 +010039#include "src/cpu/kernels/CpuConvertQuantizedSignednessKernel.h"
40#include "src/cpu/kernels/CpuGemmInterleave4x4Kernel.h"
41#include "src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
42#include "src/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h"
43#include "src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h"
44#include "src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h"
45#include "src/cpu/kernels/CpuGemmTranspose1xWKernel.h"
46#include "src/cpu/operators/CpuActivation.h"
47#include "src/cpu/operators/internal/CpuGemmAssemblyDispatch.h"
48#include "src/cpu/utils/CpuAuxTensorHandler.h"
Manuel Bottinicfac51c2021-06-18 15:47:28 +010049
50using namespace arm_compute::misc::shape_calculator;
51using namespace arm_compute::experimental;
52
53namespace arm_compute
54{
55namespace cpu
56{
57namespace
58{
59cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
60{
61 cpu::AsmGemmInfo asm_info;
Mohammed Suhail Munshi4b5f6ef2022-10-21 11:15:54 +010062 asm_info.method = cpu::AsmConvMethod::Im2Col;
63 asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
64 asm_info.depth_output_gemm3d = info.depth_output_gemm3d();
65 asm_info.activation_info = info.activation_info();
66 asm_info.output_stage = info.gemmlowp_output_stage();
67 asm_info.fast_mode = info.fast_math();
68 asm_info.reshape_b_only_on_first_run = info.reshape_b_only_on_first_run();
Manuel Bottinicfac51c2021-06-18 15:47:28 +010069
70 return asm_info;
71}
72} // namespace
73
74CpuGemmLowpMatrixMultiplyCore::CpuGemmLowpMatrixMultiplyCore()
75 : _asm_glue(std::make_unique<CpuGemmAssemblyDispatch>()),
76 _mm_kernel(),
77 _mtx_a_reshape_kernel(),
78 _mtx_b_reshape_kernel(),
79 _mtx_a_reduction_kernel(),
80 _mtx_b_reduction_kernel(),
81 _offset_contribution_kernel(),
82 _offset_contribution_output_stage_kernel(),
83 _activation_func(),
84 _convert_to_signed_asymm(),
85 _convert_from_signed_asymm(),
86 _vector_sum_col(),
87 _vector_sum_row(),
88 _tmp_a(),
89 _tmp_b(),
90 _mm_result_s32(),
91 _signed_a(),
92 _signed_output(),
93 _a_offset(0),
94 _b_offset(0),
95 _run_vector_matrix_multiplication(false),
96 _assembly_path(false),
97 _fused_assembly_path(false),
98 _reshape_b_only_on_first_run(false),
99 _is_prepared(false),
100 _fuse_output_stage(false),
101 _run_activation(false),
102 _flip_signedness(false),
103 _gemm_info(),
104 _aux_mem(Count)
105{
106}
107CpuGemmLowpMatrixMultiplyCore::~CpuGemmLowpMatrixMultiplyCore() = default;
108
109void CpuGemmLowpMatrixMultiplyCore::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *dst, const GEMMInfo &gemm_info)
110{
111 ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, dst);
112 ARM_COMPUTE_ERROR_THROW_ON(CpuGemmLowpMatrixMultiplyCore::validate(a, b, c, dst, gemm_info));
ramelg013ae3d882021-09-12 23:07:47 +0100113 ARM_COMPUTE_LOG_PARAMS(a, b, c, dst, gemm_info);
Manuel Bottinicfac51c2021-06-18 15:47:28 +0100114
115 const ITensorInfo *matrix_a = a;
116 const ITensorInfo *matrix_b = b;
117 GEMMInfo info = gemm_info;
118
119 // Set internal variables
120 _a_offset = a->quantization_info().uniform().offset;
121 _b_offset = b->quantization_info().uniform().offset;
122 _run_vector_matrix_multiplication = a->dimension(1) < 2;
123 _reshape_b_only_on_first_run = info.reshape_b_only_on_first_run();
124 _is_prepared = false;
125 _fused_assembly_path = false;
126 _flip_signedness = is_data_type_quantized_per_channel(b->data_type()) && (a->data_type() == DataType::QASYMM8) && _reshape_b_only_on_first_run;
127 _gemm_info = gemm_info;
128
129 _asm_glue = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
130
131 const ITensorInfo *a_to_use = a;
132
133 // Convert to QASYMM8 -> QASYMM8_SIGNED and back
134 if(_flip_signedness)
135 {
136 const int32_t offset_correction = 128;
137 const DataType dt = DataType::QASYMM8_SIGNED;
138 const UniformQuantizationInfo iqinfo = a_to_use->quantization_info().uniform();
139
140 _signed_a = a_to_use->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction));
141 _convert_to_signed_asymm = std::make_unique<kernels::CpuConvertQuantizedSignednessKernel>();
142 _convert_to_signed_asymm->configure(a_to_use, &_signed_a);
143 a_to_use = &_signed_a;
144 _a_offset = _signed_a.quantization_info().uniform().offset;
145
146 const UniformQuantizationInfo oqinfo = dst->quantization_info().uniform();
147 _signed_output = dst->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction));
148
149 // Output stage correction
150 GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
151 output_stage_corr.gemmlowp_offset = _signed_output.quantization_info().uniform().offset;
152 output_stage_corr.gemmlowp_min_bound -= offset_correction;
153 output_stage_corr.gemmlowp_max_bound -= offset_correction;
154 info.set_gemmlowp_output_stage(output_stage_corr);
155
156 // Update matrix a
157 matrix_a = &_signed_a;
158 }
159
160 // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
161 if(info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
162 {
163 _fuse_output_stage = true;
164 _mm_result_s32 = TensorInfo(dst->tensor_shape(), 1, DataType::S32);
165 }
166
167 // Initialize assembly kernel meta-data
168 const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
169#ifdef __aarch64__
170 switch(a->data_type())
171 {
172 case DataType::QASYMM8:
173 case DataType::QASYMM8_SIGNED:
174 case DataType::U8:
175 case DataType::S8:
176 {
177 if(is_data_type_quantized_asymmetric(a_to_use->data_type()) && info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
178 {
179 auto c_info_to_use = c == nullptr ? nullptr : c;
180 _asm_glue->configure(a_to_use, b, c_info_to_use, dst, asm_info);
181 _fused_assembly_path = _asm_glue->is_configured();
182 }
183 else
184 {
185 auto output_to_use = (_fuse_output_stage ? &_mm_result_s32 : dst);
186 _asm_glue->configure(a_to_use, b, nullptr, output_to_use, asm_info);
187 }
188 _assembly_path = _asm_glue->is_configured();
189 break;
190 }
191 default:
192 {
193 ARM_COMPUTE_ERROR("Datatype not supported");
194 break;
195 }
196 }
197#endif /* __aarch64__ */
198 if(!(_assembly_path || _run_vector_matrix_multiplication))
199 {
200 matrix_a = &_tmp_a;
201 matrix_b = &_tmp_b;
202
203 // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
204 _tmp_a = TensorInfo(compute_interleaved_shape(*a_to_use), 1, a_to_use->data_type(), a_to_use->quantization_info());
205 // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
206 _tmp_b = TensorInfo(compute_transpose1xW_shape(*b), 1, b->data_type(), b->quantization_info());
207
208 // Configure interleave kernel
209 _mtx_a_reshape_kernel = std::make_unique<kernels::CpuGemmInterleave4x4Kernel>();
210 _mtx_a_reshape_kernel->configure(a_to_use, &_tmp_a);
211
212 // Configure transpose kernel
213 _mtx_b_reshape_kernel = std::make_unique<kernels::CpuGemmTranspose1xWKernel>();
214 _mtx_b_reshape_kernel->configure(b, &_tmp_b);
215 }
216
217 if(!_fused_assembly_path)
218 {
219 // Build reduction info
220 const GEMMLowpReductionKernelInfo reduction_info(a_to_use->dimension(0), false, 0, false);
221
222 // Initialize matrix B reduction kernel only if _a_offset is not equal to 0
223 if(_a_offset != 0)
224 {
225 _vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
226
227 // Configure Matrix B reduction kernel
228 _mtx_b_reduction_kernel = std::make_unique<kernels::CpuGemmLowpMatrixBReductionKernel>();
229 _mtx_b_reduction_kernel->configure(b, &_vector_sum_col, reduction_info);
230 }
231
232 // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
233 if(_b_offset != 0)
234 {
235 _vector_sum_row = TensorInfo(compute_reductionB_shape(*a_to_use), 1, DataType::S32);
236
237 // Configure matrix A reduction kernel
238 _mtx_a_reduction_kernel = std::make_unique<kernels::CpuGemmLowpMatrixAReductionKernel>();
239 _mtx_a_reduction_kernel->configure(a_to_use, &_vector_sum_row, reduction_info);
240 }
241
242 if(_fuse_output_stage)
243 {
244 // Configure matrix multiply kernel
245 if(!_assembly_path)
246 {
247 _mm_kernel = std::make_unique<kernels::CpuGemmLowpMatrixMultiplyKernel>();
248 _mm_kernel->configure(matrix_a, matrix_b, &_mm_result_s32);
249 }
250
251 _offset_contribution_output_stage_kernel = std::make_unique<kernels::CpuGemmLowpOffsetContributionOutputStageKernel>();
252 _offset_contribution_output_stage_kernel->configure(&_mm_result_s32,
253 _a_offset == 0 ? nullptr : &_vector_sum_col,
254 _b_offset == 0 ? nullptr : &_vector_sum_row, c,
255 _flip_signedness ? &_signed_output : dst,
256 a->dimension(0),
257 _a_offset, _b_offset, info.gemmlowp_output_stage());
258
259 if(_flip_signedness)
260 {
261 _convert_from_signed_asymm = std::make_unique<kernels::CpuConvertQuantizedSignednessKernel>();
262 _convert_from_signed_asymm->configure(&_signed_output, dst);
263 }
264 }
265 else
266 {
267 // Configure matrix multiply kernel
268 if(!_assembly_path)
269 {
270 _mm_kernel = std::make_unique<kernels::CpuGemmLowpMatrixMultiplyKernel>();
271 _mm_kernel->configure(matrix_a, matrix_b, dst);
272 }
273 // Configure offset contribution kernel
274 _offset_contribution_kernel = std::make_unique<kernels::CpuGemmLowpOffsetContributionKernel>();
275 _offset_contribution_kernel->configure(dst, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a_to_use->dimension(0),
276 _a_offset, _b_offset);
277 }
278 }
279 // Configure activation
280 const ActivationLayerInfo &activation = gemm_info.activation_info();
281 _run_activation = activation.enabled() && (!_assembly_path || !cpu::CpuGemmAssemblyDispatch::is_activation_supported(activation));
282 if(_run_activation)
283 {
284 _activation_func = std::make_unique<CpuActivation>();
285 _activation_func->configure(dst, nullptr, activation);
286 }
287
288 if(_assembly_path)
289 {
290 auto asm_mem_req = _asm_glue->workspace();
291 _aux_mem[AsmGemmWorkspace] = asm_mem_req[AsmGemmWorkspace];
292 _aux_mem[Pretranspose] = asm_mem_req[Pretranspose];
293 }
294
295 // Request memory for LHS and RHS reshape matrix
296 _aux_mem[VectorSumCol] = MemoryInfo(offset_int_vec(VectorSumCol), !_fused_assembly_path && _a_offset != 0
297 && _reshape_b_only_on_first_run ?
298 MemoryLifetime::Persistent :
299 MemoryLifetime::Temporary,
300 _vector_sum_col.total_size());
301 _aux_mem[VectorSumRow] = MemoryInfo(offset_int_vec(VectorSumRow), MemoryLifetime::Temporary, _vector_sum_row.total_size());
302 _aux_mem[TmpA] = MemoryInfo(offset_int_vec(TmpA), MemoryLifetime::Temporary, _tmp_a.total_size());
303 _aux_mem[TmpB] = MemoryInfo(offset_int_vec(TmpB), _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary, _tmp_b.total_size());
304 _aux_mem[MMResultS32] = MemoryInfo(offset_int_vec(MMResultS32), MemoryLifetime::Temporary, _mm_result_s32.total_size());
305 _aux_mem[SignedA] = MemoryInfo(offset_int_vec(SignedA), MemoryLifetime::Temporary, _signed_a.total_size());
306 _aux_mem[SignedOutput] = MemoryInfo(offset_int_vec(SignedOutput), MemoryLifetime::Temporary, _signed_output.total_size());
307}
308
309Status CpuGemmLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
310{
311 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
312 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
313 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
314 ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE, "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore for output S32");
315 ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
316 "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
317 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
318 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
319
320 GEMMInfo info = gemm_info;
321 const ITensorInfo *matrix_a_info = a;
322 const ITensorInfo *matrix_b_info = b;
323
324 const ITensorInfo *a_to_use = a;
325
326 TensorInfo tmp_a_info{};
327 TensorInfo tmp_b_info{};
328 TensorInfo mm_result_s32_info{};
329
330 int32_t a_offset = a->quantization_info().uniform().offset;
331 int32_t b_offset = b->quantization_info().uniform().offset;
332
333 bool fuse_output_stage = info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE;
334 if(fuse_output_stage)
335 {
336 auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(output->tensor_shape()).set_data_type(DataType::S32));
337 }
338
339 // Convert QASYMM8->QASYMM8_SIGNED
340 TensorInfo signed_a{};
341 TensorInfo signed_output{};
342 bool flip_signedness = is_data_type_quantized_per_channel(b->data_type()) && (a->data_type() == DataType::QASYMM8) && info.reshape_b_only_on_first_run();
343 if(flip_signedness)
344 {
345 const int32_t offset_correction = 128;
346 const DataType dt = DataType::QASYMM8_SIGNED;
347 const UniformQuantizationInfo iqinfo = a_to_use->quantization_info().uniform();
348
349 signed_a = a_to_use->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction));
350 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuConvertQuantizedSignednessKernel::validate(a_to_use, &signed_a));
351 a_to_use = &signed_a;
352 a_offset = signed_a.quantization_info().uniform().offset;
353
354 const UniformQuantizationInfo oqinfo = output->quantization_info().uniform();
355 signed_output = output->clone()->set_data_type(dt).set_quantization_info(QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction));
356
357 // Output stage correction
358 GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
359 output_stage_corr.gemmlowp_offset = signed_output.quantization_info().uniform().offset;
360 output_stage_corr.gemmlowp_min_bound -= offset_correction;
361 output_stage_corr.gemmlowp_max_bound -= offset_correction;
362 info.set_gemmlowp_output_stage(output_stage_corr);
363
364 // Update matrix a
365 matrix_a_info = &signed_a;
366 }
367
368 // Initialize assembly kernel meta-data
369 const AsmGemmInfo asm_info = init_assembly_metadata(info);
370
371 // Check if we need to run the optimized assembly kernel
372 bool run_optimised = false;
373 bool run_optimised_requantized = false;
374 if(is_data_type_quantized_asymmetric(a_to_use->data_type()) && info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
375 {
376 run_optimised = bool(CpuGemmAssemblyDispatch::validate(a_to_use, b, c, output, asm_info));
377 run_optimised_requantized = run_optimised;
378 }
379 else
380 {
381 run_optimised = bool(CpuGemmAssemblyDispatch::validate(a_to_use, b, nullptr, fuse_output_stage ? &mm_result_s32_info : output, asm_info));
382 }
383
384 if(run_optimised)
385 {
386 ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
387 if(info.depth_output_gemm3d() != 0)
388 {
389 if(info.reinterpret_input_as_3d())
390 {
391 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
392 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
393 }
394 else
395 {
396 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
397 }
398 }
399 else
400 {
401 ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
402 }
403 }
404 else
405 {
406 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "NEGEMM cannot reinterpret the input tensor as 3D");
407 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "NEGEMM cannot reinterpret the output tensor as 3D");
408
409 const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
410 if(!run_vector_matrix_multiplication)
411 {
412 matrix_a_info = &tmp_a_info;
413 matrix_b_info = &tmp_b_info;
414
415 // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
416 TensorShape shape_tmp_a = a->tensor_shape();
417 shape_tmp_a.set(0, a->dimension(0) * 4);
418 shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f));
419
420 // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
421 TensorShape shape_tmp_b = b->tensor_shape();
422 shape_tmp_b.set(0, b->dimension(1) * 16);
423 shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f));
424
425 // Validate interleave kernel
426 auto_init_if_empty(tmp_a_info, a_to_use->clone()->set_tensor_shape(shape_tmp_a));
427 auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(shape_tmp_b));
428
429 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmInterleave4x4Kernel::validate(a_to_use, &tmp_a_info));
430 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmTranspose1xWKernel::validate(b, &tmp_b_info));
431 }
432 }
433
434 if(!run_optimised_requantized)
435 {
436 TensorInfo info_vector_sum_col{};
437 TensorInfo info_vector_sum_row{};
438
439 const GEMMLowpReductionKernelInfo reduction_info(a_to_use->dimension(0), false, 0, false);
440
441 // Validate matrix B reduction kernel only if _a_offset is not equal to 0
442 if(a_offset != 0)
443 {
444 info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
445
446 // Configure Matrix B reduction kernel
447 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col, reduction_info));
448 }
449
450 // Validate Matrix A reduction kernel only if _b_offset is not equal to 0
451 if(b_offset != 0)
452 {
453 info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
454
455 // Configure matrix A reduction kernel
456 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpMatrixAReductionKernel::validate(a_to_use, &info_vector_sum_row, reduction_info));
457 }
458
459 if(fuse_output_stage)
460 {
461 if(!run_optimised)
462 {
463 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
464 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
465
466 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info));
467 }
468
469 // Validate offset contribution kernel
470 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
471 a_offset == 0 ? nullptr : &info_vector_sum_col,
472 b_offset == 0 ? nullptr : &info_vector_sum_row,
473 c,
474 flip_signedness ? &signed_output : output,
475 a_offset, b_offset,
476 info.gemmlowp_output_stage()));
477 }
478 else
479 {
480 if(!run_optimised)
481 {
482 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(), "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
483 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0, "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
484
485 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output));
486 }
487 // Validate offset contribution kernel
488 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpOffsetContributionKernel::validate(output,
489 a_offset == 0 ? nullptr : &info_vector_sum_col,
490 b_offset == 0 ? nullptr : &info_vector_sum_row,
491 a_offset, b_offset));
492 }
493 }
494
495 // Validate activation
496 const ActivationLayerInfo &activation = gemm_info.activation_info();
497 if(activation.enabled())
498 {
499 ARM_COMPUTE_RETURN_ON_ERROR(CpuActivation::validate(output, nullptr, activation));
500 }
501
502 return Status{};
503}
504
505void CpuGemmLowpMatrixMultiplyCore::run(ITensorPack &tensors)
506{
507 prepare(tensors);
Georgios Pinitas22f5ed52021-07-23 18:58:43 +0100508
Manuel Bottinicfac51c2021-06-18 15:47:28 +0100509 auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
510 auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
511 auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
512 auto dst = tensors.get_tensor(TensorType::ACL_DST);
513 auto a_to_use = a;
514 auto matrix_a = a;
515 auto matrix_b = b;
516
517 CpuAuxTensorHandler vector_sum_col(offset_int_vec(VectorSumCol), _vector_sum_col, tensors, false);
518 CpuAuxTensorHandler vector_sum_row(offset_int_vec(VectorSumRow), _vector_sum_row, tensors, false);
519 CpuAuxTensorHandler tmp_a(offset_int_vec(TmpA), _tmp_a, tensors, false);
520 CpuAuxTensorHandler tmp_b(offset_int_vec(TmpB), _tmp_b, tensors, true);
521 CpuAuxTensorHandler mm_result_s32(offset_int_vec(MMResultS32), _mm_result_s32, tensors, false);
522 CpuAuxTensorHandler signed_a(offset_int_vec(SignedA), _signed_a, tensors, false);
523 CpuAuxTensorHandler signed_output(offset_int_vec(SignedOutput), _signed_output, tensors, false);
524
525 // Convert QASYMM8->QASYMM8_SIGNED
526 if(_flip_signedness)
527 {
528 ITensorPack pack =
529 {
530 { TensorType::ACL_SRC, a },
531 { TensorType::ACL_DST, signed_a.get() }
532 };
533 NEScheduler::get().schedule_op(_convert_to_signed_asymm.get(), Window::DimY, _convert_to_signed_asymm->window(), pack);
534 a_to_use = signed_a.get();
Georgios Pinitasd4a5bc52021-08-12 07:42:51 +0100535 matrix_a = signed_a.get();
Manuel Bottinicfac51c2021-06-18 15:47:28 +0100536 }
537
538 // Run GEMM
539 if(_asm_glue->is_configured())
540 {
541 ITensorPack asm_glue_tensors = tensors;
542 auto output_to_use = (_fuse_output_stage ? mm_result_s32.get() : dst);
543 if(is_data_type_quantized_asymmetric(a_to_use->info()->data_type()) && _gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
544 {
545 asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_0, a_to_use);
546 asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_1, b);
547 asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_2, c);
548 asm_glue_tensors.add_tensor(TensorType::ACL_DST, dst);
549 }
550 else
551 {
552 asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_0, a_to_use);
553 asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_1, b);
554 asm_glue_tensors.add_tensor(TensorType::ACL_DST, output_to_use);
555 }
556 _asm_glue->run(asm_glue_tensors);
557 }
558 else
559 {
560 if(!_run_vector_matrix_multiplication)
561 {
562 matrix_a = tmp_a.get();
563 matrix_b = tmp_b.get();
564 // Run interleave kernel
565 ITensorPack pack_a =
566 {
567 { TensorType::ACL_SRC, a_to_use },
568 { TensorType::ACL_DST, tmp_a.get() }
569 };
570 NEScheduler::get().schedule_op(_mtx_a_reshape_kernel.get(), Window::DimY, _mtx_a_reshape_kernel->window(), pack_a);
571
572 if(!_reshape_b_only_on_first_run)
573 {
574 ITensorPack pack_b =
575 {
576 { TensorType::ACL_SRC, b },
577 { TensorType::ACL_DST, tmp_b.get() }
578 };
579 // Run transpose kernel
580 NEScheduler::get().schedule_op(_mtx_b_reshape_kernel.get(), Window::DimY, _mtx_b_reshape_kernel->window(), pack_b);
581 }
582 }
583 ITensorPack pack_mm =
584 {
585 { TensorType::ACL_SRC_0, matrix_a },
586 { TensorType::ACL_SRC_1, matrix_b }
587 };
588 if(_fuse_output_stage)
589 {
590 pack_mm.add_tensor(TensorType::ACL_DST, mm_result_s32.get());
591 }
592 else
593 {
594 pack_mm.add_tensor(TensorType::ACL_DST, dst);
595 }
596 NEScheduler::get().schedule_op(_mm_kernel.get(), Window::DimY, _mm_kernel->window(), pack_mm);
597 }
598
599 if(!_fused_assembly_path)
600 {
601 // Run matrix A reduction kernel only if _b_offset is not equal to 0
602 if(_b_offset != 0)
603 {
604 ITensorPack pack =
605 {
606 { TensorType::ACL_SRC, a_to_use },
607 { TensorType::ACL_DST, vector_sum_row.get() }
608 };
609 NEScheduler::get().schedule_op(_mtx_a_reduction_kernel.get(), Window::DimX, _mtx_a_reduction_kernel->window(), pack);
610 }
611
612 // Run matrix B reduction kernel only if _a_offset is not equal to 0
613 if(_a_offset != 0 && !_reshape_b_only_on_first_run)
614 {
615 ITensorPack pack =
616 {
617 { TensorType::ACL_SRC, b },
618 { TensorType::ACL_DST, vector_sum_col.get() }
619 };
620 NEScheduler::get().schedule_op(_mtx_b_reduction_kernel.get(), Window::DimX, _mtx_b_reduction_kernel->window(), pack);
621 }
622
623 if(_fuse_output_stage)
624 {
625 ITensorPack pack;
626 pack.add_tensor(TensorType::ACL_SRC_0, mm_result_s32.get());
627 pack.add_tensor(TensorType::ACL_SRC_1, _a_offset == 0 ? nullptr : vector_sum_col.get());
628 pack.add_tensor(TensorType::ACL_SRC_2, _b_offset == 0 ? nullptr : vector_sum_row.get());
629 pack.add_tensor(TensorType::ACL_SRC_3, c);
630 pack.add_tensor(TensorType::ACL_DST, _flip_signedness ? signed_output.get() : dst);
631
632 // Run offset contribution kernel
633 NEScheduler::get().schedule_op(_offset_contribution_output_stage_kernel.get(), Window::DimY, _offset_contribution_output_stage_kernel->window(), pack);
634 }
635 else
636 {
637 ITensorPack pack;
638 pack.add_tensor(TensorType::ACL_SRC_0, _a_offset == 0 ? nullptr : vector_sum_col.get());
639 pack.add_tensor(TensorType::ACL_SRC_1, _b_offset == 0 ? nullptr : vector_sum_row.get());
640 pack.add_tensor(TensorType::ACL_DST, dst);
641
642 // Run offset contribution kernel
643 NEScheduler::get().schedule_op(_offset_contribution_kernel.get(), Window::DimY, _offset_contribution_kernel->window(), pack);
644 }
645 }
646
647 // Convert QASYMM8_SIGNED->QASYMM8
648 if(!_fused_assembly_path && _fuse_output_stage && _flip_signedness)
649 {
650 ITensorPack pack =
651 {
652 { TensorType::ACL_SRC, signed_output.get() },
653 { TensorType::ACL_DST, dst }
654 };
655 NEScheduler::get().schedule_op(_convert_from_signed_asymm.get(), Window::DimY, _convert_from_signed_asymm->window(), pack);
656 }
657
658 // Run fused activation unless already run in the fused assembly
659 if(_run_activation)
660 {
661 ITensorPack pack =
662 {
663 { TensorType::ACL_SRC, dst },
664 { TensorType::ACL_DST, dst }
665 };
666 _activation_func->run(pack);
667 }
668}
669
670void CpuGemmLowpMatrixMultiplyCore::prepare(ITensorPack &tensors)
671{
672 if(!_is_prepared)
673 {
674 auto original_b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
675 // Run assembly reshape
676 if(_asm_glue->is_configured())
677 {
678 _asm_glue->prepare(tensors);
Manuel Bottinicfac51c2021-06-18 15:47:28 +0100679 }
680 // Run non-assembly reshape
681 else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue->is_configured())
682 {
683 // Run reshape kernel and mark original weights tensor as unused
684 ITensor *tmp_b_p = utils::cast::polymorphic_downcast<ITensor *>(tensors.get_tensor(offset_int_vec(TmpB)));
685 CpuAuxTensorHandler tmp_b(_tmp_b, *tmp_b_p);
686 ITensorPack pack =
687 {
688 { TensorType::ACL_SRC, original_b },
689 { TensorType::ACL_DST, tmp_b.get() }
690 };
691 NEScheduler::get().schedule_op(_mtx_b_reshape_kernel.get(), Window::DimY, _mtx_b_reshape_kernel->window(), pack);
692 }
693
694 // Run matrix B reduction kernel only if _a_offset is not equal to 0
695 if(!_fused_assembly_path && _a_offset != 0 && _reshape_b_only_on_first_run)
696 {
697 ITensor *vector_sum_col_p = utils::cast::polymorphic_downcast<ITensor *>(tensors.get_tensor(offset_int_vec(VectorSumCol)));
698 CpuAuxTensorHandler vector_sum_col(_vector_sum_col, *vector_sum_col_p);
699 ITensorPack pack =
700 {
701 { TensorType::ACL_SRC, original_b },
702 { TensorType::ACL_DST, vector_sum_col.get() }
703 };
704 NEScheduler::get().schedule_op(_mtx_b_reduction_kernel.get(), Window::DimX, _mtx_b_reduction_kernel->window(), pack);
705 }
706 _is_prepared = true;
707 }
708}
709experimental::MemoryRequirements CpuGemmLowpMatrixMultiplyCore::workspace() const
710{
711 return _aux_mem;
712}
713} // namespace cpu
714} // namespace arm_compute