blob: e84b58dd0f1f77d0d607e6f8b3a4c48c4bf2e7de [file] [log] [blame]
Georgios Pinitasc0b6f762020-11-02 01:37:17 +00001/*
2 * Copyright (c) 2017-2019 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#pragma once
25
26#include <assert.h>
27
28#include <algorithm>
29
30#include "arm_gemm.hpp"
31#include "ndrange.hpp"
32#include "utils.hpp"
33
34#include "mergeresults.hpp"
35#include "transform.hpp"
36
37#ifdef CYCLE_PROFILING
38#include "profiler.hpp"
39#endif
40
41namespace arm_gemm {
42
43// Implementation of the GemmCommon abstract class.
44template<typename strategy, typename To, typename Tr>
45class GemmHybridQuantizedInline : public GemmCommon<To, Tr> {
46 typedef typename strategy::operand_type Toi;
47 typedef typename strategy::result_type Tri;
48
49 /* const properties set by constructor */
50 const CPUInfo * const _ci;
51
52 const unsigned int _Msize;
53 const unsigned int _Nsize;
54 const unsigned int _Ksize;
55
56 const unsigned int _nbatches;
57 const unsigned int _nmulti;
58
59 /* Blocking info */
60 const unsigned int _k_block;
61 const unsigned int _n_block;
62 const unsigned int _Mround;
63
64 /* Pretransposed buffer. */
65 const Toi *_B_transposed=nullptr;
66
67 const NDRange<4> _window_range;
68
69 Requantize32 _qp;
70 int32_t *col_bias = nullptr;
71
72 void *working_space = nullptr;
73
74 unsigned int _nthreads;
75
76 unsigned int get_col_sum_size() const {
77 return _Nsize * _nmulti * sizeof(int32_t);
78 }
79
80 static unsigned int compute_k_block(const GemmArgs &args) {
81 // We don't support K blocks as we only temporarily store 32 bit results.
82 return args._Ksize;
83
84 if (args._cfg && args._cfg->inner_block_size) {
85 return args._cfg->inner_block_size;
86 }
87
88 const unsigned int L1_size = args._ci->get_L1_cache_size();
89
90 // k_block: Find out how much of the larger array can be loaded into half the cache.
91 // This should account for associative caches.
92 unsigned int k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
93
94 // Needs to be (at least a single) multiple of the K unroll level.
95 k_block /= strategy::k_unroll();
96 k_block = std::max(k_block, 1U) * strategy::k_unroll();
97
98 // Now tune to presented problem size; this is how many blocks we need.
99 unsigned int numk_blocks = iceildiv(args._Ksize, k_block);
100
101 // So divide the space equally into that many blocks.
102 k_block = iceildiv(args._Ksize, numk_blocks);
103
104 // And round UP to the K unroll level required.
105 k_block = roundup(k_block, strategy::k_unroll());
106
107 return k_block;
108 }
109
110 static unsigned int compute_n_block(const GemmArgs &args) {
111 if (args._cfg && args._cfg->outer_block_size) {
112 return args._cfg->outer_block_size;
113 }
114
115 const unsigned int k_block = compute_k_block(args);
116 const unsigned int L2_size = args._ci->get_L2_cache_size();
117
118 // n_block: Work out how many rows (of length k_block) will fit in the L2
119 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
120 unsigned int n_block = (((L2_size * 9) / 10) - (k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
121 (sizeof(Toi) * k_block);
122
123 // Needs to be (at least a single) multiple of the kernel output width.
124 n_block /= strategy::out_width();
125 n_block = std::max(n_block, 1U) * strategy::out_width();
126
127 // And tune to the presented problem size.
128 unsigned int numblocks = iceildiv(args._Nsize, n_block);
129 n_block = iceildiv(args._Nsize, numblocks);
130 n_block = roundup(n_block, strategy::out_width());
131
132 return n_block;
133 }
134
135public:
136 GemmHybridQuantizedInline(GemmHybridQuantizedInline &) = delete;
137 GemmHybridQuantizedInline & operator= (GemmHybridQuantizedInline &) = delete;
138
139 /* Constructor */
140 GemmHybridQuantizedInline(const GemmArgs &args, const Requantize32 &qp)
141 : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize),
142 _nbatches(args._nbatches), _nmulti(args._nmulti),
143 _k_block(compute_k_block(args)), _n_block(compute_n_block(args)),
144 _Mround(roundup(args._Msize, strategy::out_height())),
145 _window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti),
146 _qp (qp), _nthreads(args._maxthreads) { }
147
148 // Interface implementation - Compulsory functions
149 ndrange_t get_window_size() const override {
150 return { _window_range.total_size() };
151 }
152
153 // This kernel can always be dynamically scheduled.
154 bool supports_dynamic_scheduling() const override {
155 return true;
156 }
157
158 // Execute
159 void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override {
160#ifdef CYCLE_PROFILING
161 profiler prof;
162#endif
163 strategy strat(_ci);
164
165 /* Make sure we've been set up correctly. */
166 assert(_B_transposed);
167 static_assert(std::is_same<To, Toi>::value, "gemm_native: Operand types must be the same.");
168
169 /* For now, each work item implies all the K for a given output
170 * pixel (so we don't need to synchronize access to the output
171 * array). So separate the loop over K blocks here. */
172 for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
173 unsigned int kmax = std::min(k0 + _k_block, _Ksize);
174 unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll());
175
176 auto p = _window_range.iterator(work_range.get_position(0), work_range.get_position_end(0));
177
178 if (p.done()) {
179 return;
180 }
181
182 do {
183 const unsigned int m_start = p.dim(0) * strategy::out_height();
184 const unsigned int m_end = std::min(p.dim0_max() * strategy::out_height(), _Msize);
185 const unsigned int batch = p.dim(1);
186 const unsigned int n0 = p.dim(2) * _n_block;
187 const unsigned int nmax = std::min(n0 + _n_block, _Nsize);
188 const unsigned int multi = p.dim(3);
189
190 const Toi *b_panel = _B_transposed +
191 (multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) +
192 (k0 * roundup(_Nsize, strategy::out_width())) +
193 (n0 * kern_k);
194
195 {
196#ifdef CYCLE_PROFILING
197 auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width()));
198#endif
199 strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda,
200 b_panel,
201 this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc,
202 (m_end - m_start), (nmax - n0), kmax - k0,
203 col_bias + (multi * _Nsize) + n0, _qp);
204 }
205 } while (p.next_dim1());
206 }
207 }
208
209 // Interface implementation - pretransposed
210 bool B_is_pretransposed() const override {
211 return true;
212 }
213
214 bool B_pretranspose_required() const override {
215 return (_B_transposed==nullptr);
216 }
217
218 size_t get_B_pretransposed_array_size() const override {
219 return get_col_sum_size() + (roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi));
220 }
221
Michele Di Giorgioaed63ee2021-07-26 13:18:50 +0100222 void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
Georgios Pinitasc0b6f762020-11-02 01:37:17 +0000223 col_bias = reinterpret_cast<int32_t *>(in_buffer);
224
225 for (unsigned int i=0; i<_nmulti; i++) {
226 compute_col_sums(_qp, _Nsize, _Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _Nsize), _Ksize, i, 0);
227 }
Michele Di Giorgioaed63ee2021-07-26 13:18:50 +0100228 }
229
230 void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
231 requantize_bias(in_buffer, B, ldb, B_multi_stride);
Georgios Pinitasc0b6f762020-11-02 01:37:17 +0000232
233 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
234 Toi *buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
235 _B_transposed = buffer;
236 strategy strat(_ci);
237
238 for (unsigned int multi=0; multi<_nmulti; multi++) {
239 for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
240 const unsigned int kmax = std::min(k0 + _k_block, _Ksize);
241 const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll());
242
243 for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) {
244 const unsigned int xmax = std::min(x0+_n_block, _Nsize);
245
246 const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size;
247
248 strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb,
249 x0, xmax, k0, kmax);
250
251 buffer += size;
252 }
253 }
254 }
255 }
256
257 void set_pretransposed_B_data(void *in_buffer) override {
258 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
259 _B_transposed = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
260 col_bias = reinterpret_cast<int32_t *>(in_buffer);
261 }
262
263 void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override {
264 _qp.bias = bias;
265 _qp.bias_multi_stride = bias_multi_stride;
266 }
267};
268
269} // namespace arm_gemm